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Abstract: This article studies in detail a subclass of Jackson networks class, namely the subclass of
computer networks with queues in series and comes to prove a theorem which is called the Jackson's
theorem, which provides a formula that gives an analytic expression of the probability distributions for
the asymptotically stable equilibrium state of this subclass.

The solution of this model in asymptotically stable equilibrium state will provide, at every moment,
the probability that in the network nodes to be a certain number of transitions, in the waiting tail of the
node or in processing by the server of the respectively network node.
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1. Preliminary

The behavior of computer networks is
characterized by the presence of some congestion
points of transitions, called network nodes [1, 2].

In every network node forms a waiting queue
where the transitions arrived in the node wait to be
selected according to the discipline associated to
the waiting queue, in order to be processed.

So we consider a network node as an entity made
of a server or processing unit and a waiting queue,
depicted as in Fig. 1[1].

Collection of such network nodes and interaction
between them forms a computer network with
waiting queues.

Definition 1.1 It’s  called  Jackson  network  a
computer network with waiting queues where
every server is preceded by a waiting string and

where every transition, after has been processed by
the server, is sent in the queue of another server.

The  name  of  such  a  network  class  comes  from
the name of the one whome, using stochastic
processes, like multi dimensional processes of
birth and death, discovered the solution of
mathematic model associated to the net in a
simplified shape of product.

Jackson network class contains subclasses of
network with series queues, with parallel queue,
acyclic, with feedback and with queues in local
balance.

We’ll build a mathematic model associated to a
Jackson type computer network, obtaining a
dynamic probabilistic model.

The solution of this model will give, in every
moment, the probability that in network’s nodes to

arrivals Waiting queue server

departures

Figure. 1 Network node
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be a number of transitions in the waiting queue of
the node or in processing by the server of net node.

2. Theoretical results
The main result of the article requires the

following result due to Burke's demonstration,
whose demonstration is in [2].

Theorem 2.1.  If  in  a  net  node  the  process  of
transition arrivals is Poissonian with  parameter and
the process of transition processing is Poissonian
with parameter, then the process of transition
departures of net node is Poisson with
parameter.

Theorem 2.2 We consider  a computer network
made of  N net nodes in series, to which the influx
transitions is Poissonian with  rate and the
processing flow in net node i is Poissonian with rate

i, i= N,1 . If utilization factors 1,0
i

i  for

every i= N,1 , then the solution of model network in
series proper to the asymptotically stable steady state

is: p(n1,n2,….nN) =
N

i

n
ii

i

1
.1

Proof
We note iQ  the number of transitions in node i

at time Ni ,1, [1]
Sought to determine the probability that at time
to have ni transitions in node i, Ni ,1 , that is the

probability:
NNN nQnQnQPnnnP ,...,,,,...,, 221121

In the asymptotically stable state for any
Nini ,1,0  there  is ,,...,,lim 21 NnnnP  and

is finite, value noted Nnnnp ,...,, 21 .
The probability distribution Nnnnp ,...,, 21 ,

proper to the asymptotically stable steady state,
shows a description of the computer net average
behavior on long-term.

We note
NnnnS ,...,, 21

 the  network  state  proper  to

the case in which, for Ni ,1 , in node i there are ni

transitions.
Thus Nnnnp ,...,, 21  =

NnnnSP ,...,, 21
 that  is  the

probability distribution of the asymptotically stable
steady state represents the probability that the
network be in state

NnnnS ,...,, 21
. Will obtain these

probabilities considering the mathematical model
associated to the network as a stochastic process type
birth and death multi-dimensional.

 Next, we demonstrate the assertion from
enunciates through induction after N(N 2).

Case N=2.
Consider a JACKSON network with two

series queues, as in Fig.2 in which the transactions
arrived at the end of queue 1,after a Poisson flow of
rate  ,  waits  to  be  processed  by  server  of  node  1.
After  a  transaction  is  processed  by  this  server,  will
go at the end of the queue of node 2, where waits to
be processed by this node’s server, while server 1
selects a new transaction from it’s queue, according
to  the  order  chosen  for  the  queue.  As  per  BURKE
theorem,  the  arrivals  to  queue  of  node  2  are  also
Poisson of parameter  + 1, where 1 is  the  rate  o
server’s 1 processing. Thereby the arrivals to queue
of node 2 are a Poisson flow of rate  + 1. Because
the  rate  of  transitions  processing  by  server  2  is 2
according to BURKE theorem, transitions that leave
this network are a Poisson flow of rate :
 + 1 + 2.

Figure. 2.

Follow to determine the probability that at time
to have n1 transitions in node 1 and n2 transitions in
node 2, that is:

     P(n1,n2, ) = P(Q1( ) = n1 Q2( ) = n2).
Therefore, we will calculate successively the next

probabilities:
P(0,0,  +  ) = probability of not having

transitions in any node at time .
    P(0,n2,  + ) =probability of not having only

in node 2, n2 transitions at time
(n2 1).

    P(n1,0,  +  ) = probability of having only in
node 1, n1 transitions at time (n1 1).

    P(n1,n2,  +  ) = probability of having n1
transitions in node 1 and n2 transitions in node 2 at

time 1( 1n i ).12n

queue
2

queue
1

Node
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node  of
net 2
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Using the hypothesis of a stochastic process type
birth death, we obtain the following:

P(0,0,  +  )  = P(0,0, ) ·(1- )  + P(0,1, ) 2 ·
 (1- ) + 0( )

P(0,0,  +  )  = P(0,0, )  – P(0,0,  +
2P(0,1,  + 0( )

),0,0(),0,0( PP

.
)(0

),1,0(),0,0( 2 PP

Passing to limit after  0 obtain:

),1,0(),0,0(),0,0( 2 PPP
d
d

P( 0,n2, ) =
=P(0,n2, )[1- )[1- 2 ]+P(1,n2–1, )· 1 [1-
- )[1- 2 ]+P(0,n2+1, )· 2 [1- )+0( ) .

),,0(),,0( 22 nPnP
 =

= -( 2 + )P(0,n2, )+ 1P(1,n2 – 1, ) + 2P(0,n2+

+ 1, )+ )(0  .

Passing to limit after  0 obtain:

d
d P(0,n2, )=-( + 2)P(0,n2, )+ 1P(1,n2-1, )+

+ 2P(0,n2 +1, )
Analogue :

P(n1,0, )=P(n1,0, )[1– )[1– 1 ]+
+P(n1–1,0, )· [1- 1 ]+P(n1,1, )· 2 [1- )[1-

1 ] + 0( )
),0,(),0,( 11 nPnP  =

= -( 1+ )P(n1,0, )+ P(n1-1,0, )+ 2P(n1,1, )+ )(0

Thus:

d
d

P(n1,0, )=-( + 1)P(n1,0, )+ P(n1-1,0, )+

+ 2P(n1,1, )
Finally:

P(n1,n2, )=P(n1,n2, )[1– )[1– 1 ][1– 2 ]+
+P(n1 – 1,n2, )· ·[1– 1 ][1– 2 ] +
+P(n1,n2 +1, )·[1 – )[1 – 1 ] 2  +
+P(n1+1,n2 –1, )·[1- ) · 1 ·(1 – 2 ) + 0( )

),,(),,( 2121 nnPnnP

=-( 1+ 2+ )·P(n1,n2, )+ P(n1–1,n2 )+

+ 2·P(n1,n2+1, )+ 1P(n1+1,n2 –1, )+ )(0

Passing to limit after  0 obtain:

d
d P(n1,n2 , ) = -(  + 1 + 2)·P(n1,n2, ) +

+ P(n1–1,n2, ) + 1P(n1 +1,n2 –2, ) + 2·P(n1,n2 +1, )
Conclusively, for the model of computer network

with two series nodes, is obtained the following
system of differential equation:

),1,(),1,1(),,1(

),,()(),,(

),1,(),0,1(),0,()(

),0(

),1,0(),1,1(),,0()(

),,0(

),1,0(),0,0(),0,0(

21221121

212121

12111

1

222122

2

2

nnPnnPnnP

nnPnnP
d
d

nPnPnP

nP
d
d

nPnPnP

nP
d
d

PPP
d
d

0,1),,( 2
0,

1
21

nnP
nn

(complimentarily

condition)
In general case, this system is extremely difficult

to resolve. In the stabile asymptotically balance is
known that for any n1,n2  0 there is, and id finite :

),(),,(lim 2121 nnpnnP
The probability distribution p(n1,n2) of stabile

asymptotically balance delivers a description of the
average behavior of the computer network long-
term. In this condition, the system above becomes:

1

0111
1

01010
010110

01000

2
0

1

212211

212121

12111

222122

2

21

)n,n(p

)n,n(p)n,n(p
)n,n(p)n,n(p)(

),n(p),n(p),n(p)(
)n,(p)n,(p)n,(p)(

),(p),(p

n,n

We consider:
p(n1,n2) = 0, n1 < 0 or n2 < 0

1p(0,n2) = 0
2p(n1,0) = 0.

relations that are natural if we think of their
interpretation.

Thus 1p(0,n2) is the probability of processing a
transition in node 1, but in this node we have no
transition, and so 1p(0,n2) = 0.

Analogue 2p(n1,0) = 0.
In  these  hypothesis,  the  system  of  the  first  4

equations proper to the state of stabile
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asymptotically balance is reduced to a single
equation[1, 2], which is:

p(n1 –1,n2)  + 1p(n1 +1,n2 –1)  + 2p(n1,n2 +1)=
= (  + 1 + 2)p(n1,n2)

From this relation, deduce that in case of stabile
asymptotically balance, the flow of each state is
conserved,  that  is  for  any  state,  the  input  flow
coincides with output flow of this state.

To this relation adds the obvious
relation 1),(

0,
21

21 nn
nnp .

If note
21 ,nnS the network state appropriate to the

case in which in node 1 there are n1 transitions and in
node 2 there are n2 transitions, in the relation above
see that the states to which and from which have the
transitions with state

21 ,nnS  are:

1,,11,1 212121
,, nnnnnn SSS as inputs of state

21 ,nnS

1,1,1,1 212121
,, nnnnnn SSS  as outputs for

21 ,nnS .
The interaction of these states is given by diagram

in Fig. 3.

              Fig 3
Because in any system in stabile balance, the flow

rate of input in a state is the same with the flow rate
of output from that state, and that is for any state of
the  system,  results  that  in  our  case,  by  writing  this
relation of flow’s preservation for state

21 ,nnS ,
obtain:

Flow rate of input for :

21 ,nnS = p(n1–1,n2)+ 1p(n1+1,n2-)+ 2p(n1,n2+1).
Flow rate of output from :

21 ,nnS = (  + 1 + 2) p(n1,n2).

By condition of flow’s preservation in
21 ,nnS obtain

relation:

 p(n1-1,n2) + 1 p(n1 + 1,n2-1) + 2 p(n1,n2 + 1)= =
(  + 1 + 2) p(n1, n2)

which is actually the relation equivalent to the
probability system in case of stabile asymptotically
balance.

Notice that if we put into a rectangular network
n1On2, the neighbor states for

21 ,nnS ,then every flow

rate is well targeted, which is:  from left to right, 

2 downwards and 1 direction SE-NV.
Since in the considered computer network with

series queues, the two net nodes are independent,
Jackson [1] comes with the idea of looking for
solutions to the system corresponding to stabile
asymptotic balance as a product, that is
p(n1,n2)=p1(n1)·p2(n2), where pi(ni) is the probability
of having in node i, ni transitions in state of stabile
asymptotic balance and so:

0
22

0
11

21

11
nn

npsinp                 (*)

With this choice, the equation above becomes:
1p1(n1 +  1)  p2(n2 –  1)  +  p1(n1 –  1)  p2(n2)  +

2p1(n1) p2(n2 +1)=( 1 + 2 ) p1(n1)p2(n2) (1)
For n1 = n2 = 0 and using the hypothesis above,

obtain the equation:
1p1(1)p2(-1) + p1(-1)p2(0) + 2p1(0)p2(1) =

= (  + 1 + 2) p1(0)p2(0)
2p1(0)p2(1) = p1(0)p2(0)

p1(0)[ 2p2(1) – p2(0)] = 0.
We have the following situation possible:

1.If p1(0) = 0 in relation (1) above n1 = 0 obtain:
1p1(1)p2(n2 - 1)+ p1(-1)p2(n2)+ 2p1(0)p2(n2 +1)  =

(  + 1 + 2) p1(0)p2(n2)
Using the hypothesis above and p1(0)=0 obtain:

1p1(1) · p2(n2-1) = 0
If p1(1) = 0 is demonstrated by induction that

p1(n1) = 0 for any n1  0.
If p2(n2 – 1) = 0 results that p2(n2) = 0 for any n2

0.
Both situations are false, because they contradict

relations (*) above.

2.If 2p2 (1)– p2(0)=0 p2(1)=
2

p2(0)  (2)

With this value go in relation (1) after n2 = 0.
Have: 1p1(n1 + 1)p2(-1) + p1(n1 – 1)p2(0) +

+ 2p1(n1)p2(1) = (  + 1 + 2) p1(n1)p2(0)
Results: p1(n1 - 1)p2(0) + 2p1(n1)p2(1) =
=(  + 1) p1(n1)p2(0)

Replacing p2(1) with it’s value from relation (2)
obtain:

S
n11,n2+1

S
n1,n2+1

S
n1,n S

n1+1
,n

S
n1-,n2

S
n1+1,n2-1

S
n1,n2-1
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p2(0)[ p1(n1–1)– + 1)p1(n1)]+ 2p1(n1)
2

p2(0)=0

p2(0)[ p1(n1 – 1) – p1(n1)] = 0.
If p2(0)  = 0 is shown that above are obtained null

values for p1 and p2, which is false.

Thus, results that for p1(n1) =
1

p1(n1 - 1) for any

n1  1.

Writing this relation as :
)1(

)(

1

1

kp
kp =

1
, k  1

and doing the product:
1

1 1

1

)1(
)(n

k kp
kp

=
1

1

n

obtain
1

11

11

)0(
)(

n

p
np

and so )0()( 1
1

11

1

pnp
n

         (**)

From relation:
01

111
n

np

01

01

1

1

,1

1

11
1

11)0(10
n

n

n

n

pp ,

if
1

< 1, so that the series is convergence.

Note 1  =

1

and call 1 utilization factor in net

node 1.
So for 1 (0,1) have p1(n) = (1 – 1) 1

n
, n  0,(3)

Use this result in relation (1) after n1 = 0.
Obtain:

1p1(1)p2(n2–1)+ p1(-1)p2(n2)+ 2p1(0)p2(n2 + 1)=
=(  + 1 + 2) p1(0)p2(n2).

From hypothesis result:
1p1(1)p2(n2–1)+ 2p1(0)p2(n2+1)–( + 2)p1(0)p2(n2) = 0

Replacing p1 with value found in relation (**)
obtain:

1
1

p1(0)p2(n2–1)+ 2p1(0)p2(n2+1)–

-(  + 2) p1(0)p2(n2) = 0
p1(0)[ p2(n2 –1)+ 2p2(n2 +1)–( + 2)] =0
We’ve seen above that p1(0) 0 and so:

[p2(n2–1) – p2(n2)] = 2[p2(n2) – p2(n2 + 1)], n2  1.
Writing this relation as:

[p2(k –1) – p2(k)] = 2[p2(k) – p2(k + 1)], k  1
and making the sum of k from 1 to n2 obtain:

2 2

1 1
22222 1)()1(

n

k

n

k
kpkpkpkp ,

relation equivalent with:
[p2(0) – p2(n2)] = 2[p2(1) – p2(n2 + 1)]

But from (2) p2(1) =
2

p2(0). Replacing this

above and reducing the term p2(0) obtain:

 p2(n2 + 1) =
2

p2(n2)

In doing the above we obtain successively:

0
0

1
0

1

2
2

22
22

22

2

1

0 2

2

22

2

22

22

pnp
)(p
)n(p

)k(p
)k(p

k,
)k(p

kp

nn

nn

k

from

02 02

2

101 2
2

22
n n

n

pnp

,11)0(
2

2

2

02

2

n

np

if
2

< 1 so that the series to be convergence.

Note
2

2 and call 2 factor  of utilization

in node 2.
Thus for 2 (0,1) obtain:

nnp 222 )1()( , .0n          (4)
Form relations (3), (4) and from :
p(n1, n2) = p1(n1) · p2(n2) obtain the solution for

the state of stabile asymptotic balance of the model
as being:

0,),1)(1(),( 21212121
21 nnnnp nn ,

where 1,0,1,0
2

2
1

1 .

Case N>2.
Assuming now that the relation form the

statements true for 1,2 Nk .
For  k=  N  -  1  take  the  first N – 1 series nodes

and  form  the  net 1 for which we know the
solution:

 p(n1,n2,….,nN – 1) = ,1
1

1

N

i

n
ii

i according the

hypothesis of induction.
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Thus  is  obtain  connecting  in  series 1 with
net node N, as in Fig. 4.

Note
NnnS , state corresponding to :

n = (n1,…,nN – 1) and nN  and
p(n,nN)= p(

NnnS , ) = )( ,,..., 11 NN nnnSp  =
=p((n1,…,nN – 1),nN) = p(n1,…,nN–1,nN).

As passing from 1 in net node N is made
through net node N –1, it can be built the next
diagram of flow between states (similar to case of
two series net nodes)(see Fig.5) in which

)1,,...,(1 121 NN nnnn  and
)1,,...,(1 121 NN nnnn

Write relation of flow preservation in state

NnnS , and for resolving the obtained system we
look for solutions like:

p(n,nN) = p(n)pN(nN).
The preservation relation is:

N –1p(n + 1)pN(nN – 1) + p(n – 1)pN(nN) + N

p(n)pN(nN +1) = (  + N –1 + N) · p(n)pN(nN)      (5)

S
n-1,nN+1

S
n-1,nN

S
n,nN+1

S
n+1,nN

S
n+1,nN-1

S
n,nN

S
n,nN-1

N-1N-1

N-1 N-1

NN

N N

Fig. 5

Arrivals
poisson depart

nod N

nod N-1nod
1

1

Figure. 4
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Using that p(n)  = in
ii

N

i
)1(

1

1
 (results

from induction hypothesis) it will be obtained a
relation of recurrence of order I for pN and
therefore: Nn

NNNN np )1()( , where

)1,0(
N

N .

Thus  : p(n1,…,nN –1 ,nN)  = p(n,nN)=p(n)pN(nN)=

= iNi n
ii

N

i

n
NN

n
ii

N

i
)1()1()1(

1

1

1
.

Indeed, replacing p(n)  in relation (5) obtain:

2

1
11

2

1
111

)()1()1(

)1()1()1(

N

i
NNNNi

n
i

N

i
NNNNi

n
iN

npnp

npnp

i

i

2

1
111

2

1
11

)()()1()(

)1()()1(

N

i
NNNNi

n
iNN

N

i
NNNNi

n
iN

npnp

npnp

i

i

We divide this relation to
2

1
)1(

N

i
i

n
i

i  and

)()1()(

)1()1(

)()1(

)1()1(

111

11

1
1

1

1
1

11

1

1

1

1

NNN
n
NNN

NNN
n
NN

NNN
n
N

NNN
n
NN

np

np

np

np

N

N

N

N

Divide through )1( 1
1

1
1

N
n
N

N  and obtain:

)1(
)()1(

1

2
11

NNNN

NNNNNN

np
npnp

)()( 11 NNNNN np
Reduce the term )( NN np  with

)()(
1

111 NN
N

NNNNN npnp , divide

with
1

1
N

N  and obtain:

)()(
)1()1(11

NNN

NNNNNNN

np
npnp

)]1()([
)]()1([

NNNNN

NNNN

npnp
npnp

a relation similar to the one form which we
obtained p2. Forwards, proceed as for p2 and finally
obtain pN as  being Nn

NNNN np )1()(   where

)1,0(
N

N .

In order to obtain this result, it was also needed

the relation )0()1( N
N

N pp  which is get if in

relation (5) put n = 0 and nN = 0.
Obtain:

)0()0()(
)1()0()0()1()1()1(

1

1

NNN

NNNNN

pp
pppppp

)0()1(

0)]0()1()[0(

N
N

N

NNN

pp

ppp

because p(0)  0.

Observations[1].

1) Jackson has shown that forma the product  of
the final relationship of a mathematical model is
available also in a more general case, in which are
allowed transitions between states form:

Nj nnnS ,...,,...,1 Nj nnnS ,...,1,...,1
, a transition enters

from the environment directly to the queue of
processor j.

Ni nnnS ,...,,...,1 Ni nnnS ,...,1,...,1
, a transition leaves

the system (computer net) through net node i.
Nji nnnnS ,...,,...,...,1 Nji nnnnS ,...,1,...1,...,1

,
a transition passes from net node i straight to
node j.

  2) Also, Jackson has shown that the final
solution is obtained as a product for a more general
class of networks in which is allowed processing
the transitions several times in a certain net node,
that is allowing cycling the transitions between
entering and leaving a certain net node.

3. Conclusion

This article presents a concrete modality to
model systems for the particular case of computer
networks with series queues, which is the
mathematical method that leads to a equations
system, sometimes impossible to resolve without
imposing supplementary hypothesis which are, in
some cases, extremely restrictive, hypothesis that
ease up the model from the real modeled system.

In this case, working in the asymptotically
stable equilibrium state, the differential equations
system that’s obtained, impossible to resolve in
general, is reduced to a resolvable equations
system, which will provide, through the probability
distribution p(n1,  n2, ..., nN), a description of the
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medium behaviour on long term of the computer
networkwith series queues.

In the same way the other subclasses of Jackson
network can be modeled, and also network type
BCMP, BUZEN, etc and the theoretical results can
be compared by mathematical models for
performance indicators, such as: using a node, use
two or more node in the same time, residence time
of transactions in network, medium length of
waiting tails, a node’s efficiency and many other,
with the results given by modeling through other
methods, such as modeling trough Coloured Petri
nets [3,4].
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