A PROBABILISTIC DYNAMIC MODEL ASSOCIATED TO A JACKSON NETWORK, WITH SERIES QUEUES; THE SOLUTION OF THE ASYMPTOTICALLY STABLE STEADY STATE

POPA MARIN, DRĂGAN MIHĂIȚĂ, POPA MARIANA
University of Bucharest, Technology Department, marpopa2002@yahoo.com
University of Bucharest, Technology Department, dragan_mihaita@yahoo.com

Abstract

This article studies in detail a subclass of Jackson networks class, namely the subclass of computer networks with queues in series and comes to prove a theorem which is called the Jackson's theorem, which provides a formula that gives an analytic expression of the probability distributions for the asymptotically stable equilibrium state of this subclass.

The solution of this model in asymptotically stable equilibrium state will provide, at every moment, the probability that in the network nodes to be a certain number of transitions, in the waiting tail of the node or in processing by the server of the respectively network node.

Keywords: computer network, JACKSON network, network with series queues, server, sorting process.

1. Preliminary

The behavior of computer networks is characterized by the presence of some congestion points of transitions, called network nodes [1, 2].
In every network node forms a waiting queue where the transitions arrived in the node wait to be selected according to the discipline associated to the waiting queue, in order to be processed.

So we consider a network node as an entity made of a server or processing unit and a waiting queue, depicted as in Fig. 1[1].
where every transition, after has been processed by the server, is sent in the queue of another server.
The name of such a network class comes from the name of the one whome, using stochastic processes, like multi dimensional processes of birth and death, discovered the solution of mathematic model associated to the net in a simplified shape of product.
Jackson network class contains subclasses of network with series queues, with parallel queue, acyclic, with feedback and with queues in local balance.

Figure. 1 Network node

Collection of such network nodes and interaction between them forms a computer network with waiting queues.

Definition 1.1 It's called Jackson network a computer network with waiting queues where every server is preceded by a waiting string and

We'll build a mathematic model associated to a Jackson type computer network, obtaining a dynamic probabilistic model.

The solution of this model will give, in every moment, the probability that in network's nodes to
be a number of transitions in the waiting queue of the node or in processing by the server of net node.

2. Theoretical results

The main result of the article requires the following result due to Burke's demonstration, whose demonstration is in [2].

Theorem 2.1. If in a net node the process of transition arrivals is Poissonian with α parameter and the process of transition processing is Poissonian with β parameter, then the process of transition departures of net node is Poisson with $\alpha+\beta$ parameter.

Theorem 2.2 We consider Σ a computer network made of N net nodes in series, to which the influx transitions is Poissonian with λ rate and the processing flow in net node i is Poissonian with rate $\mu_{\mathrm{i}}, \mathrm{i}=\overline{1, N}$. If utilization factors $\rho_{i}=\frac{\lambda}{\mu_{i}} \in(0,1)$ for every $\mathrm{i}=\overline{1, N}$, then the solution of model network in series proper to the asymptotically stable steady state is: $\mathrm{p}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots . \mathrm{n}_{\mathrm{N}}\right)=\prod_{i=1}^{N}\left(1-\rho_{i}\right) \rho_{i}^{n_{i}}$.

Proof

We note $Q_{i}(\tau)$ the number of transitions in node i at time $\tau, i=\overline{1, N}$ [1]

Sought to determine the probability that at time
τ to have n_{i} transitions in node $\mathrm{i}, i=\overline{1, N}$, that is the probability:
$P\left(n_{1}, n_{2}, \ldots n_{N}, \tau\right)=P\left(Q_{1}(\tau)=n_{1}, Q_{2}(\tau)=n_{2}, \ldots, Q_{N}(\tau)=n_{N}\right)$
In the asymptotically stable state for any $n_{i} \geq 0, \forall i=\overline{1, N}$ there is $\lim _{\tau \rightarrow \infty} P\left(n_{1}, n_{2}, \ldots, n_{N}, \tau\right)$ and is finite, value noted $p\left(n_{1}, n_{2}, \ldots, n_{N}\right)$.

The probability distribution $p\left(n_{1}, n_{2}, \ldots, n_{N}\right)$, proper to the asymptotically stable steady state, shows a description of the computer net average behavior on long-term.

We note $S_{n_{1}, n_{2}, \ldots, n_{N}}$ the network state proper to the case in which, for $\forall i=\overline{1, N}$, in node i there are n_{i} transitions.

Thus $p\left(n_{1}, n_{2}, \ldots, n_{N}\right)=P\left(S_{n_{1}, n_{2}, \ldots, n_{N}}\right)$ that is the probability distribution of the asymptotically stable steady state represents the probability that the network be in state $S_{n_{1}, n_{2}, \ldots, n_{N}}$. Will obtain these probabilities considering the mathematical model associated to the network as a stochastic process type birth and death multi-dimensional.

Next, we demonstrate the assertion from enunciates through induction after $\mathrm{N}(\mathrm{N} \geq 2)$.

Case $\mathbf{N}=2$.

Consider a JACKSON network with two series queues, as in Fig. 2 in which the transactions arrived at the end of queue 1 , after a Poisson flow of rate λ, waits to be processed by server of node 1 . After a transaction is processed by this server, will go at the end of the queue of node 2 , where waits to be processed by this node's server, while server 1 selects a new transaction from it's queue, according to the order chosen for the queue. As per BURKE theorem, the arrivals to queue of node 2 are also Poisson of parameter $\lambda+\mu_{1}$, where μ_{1} is the rate o server's 1 processing. Thereby the arrivals to queue of node 2 are a Poisson flow of rate $\lambda+\mu_{1}$. Because the rate of transitions processing by server 2 is μ_{2} according to BURKE theorem, transitions that leave this network are a Poisson flow of rate :
$\lambda+\mu_{1}+\mu_{2}$.

Figure. 2.
Follow to determine the probability that at time τ to have n_{1} transitions in node 1 and n_{2} transitions in node 2 , that is:

$$
P\left(n_{1}, n_{2}, \tau\right)=P\left(Q_{1}(\tau)=n_{1} \wedge Q_{2}(\tau)=n_{2}\right)
$$

Therefore, we will calculate successively the next probabilities:
$P(0,0, \tau+\Delta \tau)=$ probability of not having transitions in any node at time $\tau+\Delta \tau$.
$P\left(0, n_{2}, \tau+\Delta \tau\right)=$ probability of not having only in node $2, n_{2}$ transitions at time
$\tau+\Delta \tau\left(\mathrm{n}_{2} \geq 1\right)$.
$P\left(n_{l}, 0, \tau+\Delta \tau\right)=$ probability of having only in node $1, n_{l}$ transitions at time $\tau+\Delta \tau\left(\mathrm{n}_{1} \geq 1\right)$.
$P\left(n_{1}, n_{2}, \tau+\Delta \tau\right)=$ probability of having n_{1} transitions in node 1 and n_{2} transitions in node 2 at time $\tau+\Delta \tau \quad\left(n_{1} \geq 1_{\text {şi }} n_{2} \geq 1\right)$.

Using the hypothesis of a stochastic process type birth death, we obtain the following:

$$
\begin{aligned}
& P(0,0, \tau+\Delta \tau)=P(0,0, \tau) \cdot(1-\lambda \Delta \tau)+P(0,1, \tau) \mu_{2} \cdot \\
& \Delta \tau \\
& \quad \Rightarrow P(1-\lambda \Delta \tau)+0(\Delta \tau) \\
& \quad \Rightarrow P(0,0, \tau+\Delta \tau)=P(0,0, \tau)-\lambda P(0,0, \tau) \Delta \tau+ \\
& \mu_{2} P(0,1, \tau) \Delta \tau+0(\Delta \tau) \Rightarrow \\
& \quad \Rightarrow \frac{P(0,0, \tau+\Delta \tau)-P(0,0, \tau)}{\Delta \tau}= \\
& \quad=-\lambda P(0,0, \tau)+\mu_{2} P(0,1, \tau)+\frac{0(\Delta \tau)}{\Delta \tau} .
\end{aligned}
$$

Passing to limit after $\Delta \tau \rightarrow 0$ obtain:
$\frac{d}{d \tau} P(0,0, \tau)=-\lambda P(0,0, \tau)+\mu_{2} P(0,1, \tau)$
$P\left(0, n_{2}, \tau+\Delta \tau\right)=$
$=P\left(0, n_{2}, \tau\right)[1-\lambda \Delta \tau)\left[1-\mu_{2} \Delta \tau\right]+P\left(1, n_{2}-1, \tau\right) \cdot \mu_{1} \Delta \tau[1-$
$-\lambda \Delta \tau)\left[1-\mu_{2} \Delta \tau\right]+P\left(0, n_{2}+1, \tau\right) \cdot \mu_{2} \Delta \tau[1-\lambda \Delta \tau)+0(\Delta \tau)$.
$\Rightarrow \frac{P\left(0, n_{2}, \tau+\Delta \tau\right)-P\left(0, n_{2}, \tau\right)}{\Delta \tau}=$
$=-\left(\mu_{2}+\lambda\right) P\left(0, n_{2}, \tau\right)+\mu_{1} P\left(1, n_{2}-1, \tau\right)+\mu_{2} P\left(0, n_{2}+\right.$ $+1, \tau)+\frac{0(\Delta \tau)}{\Delta \tau}$.
Passing to limit after $\Delta \tau \rightarrow 0$ obtain:
$\frac{d}{d \tau} P\left(0, n_{2}, \tau\right)=-\left(\lambda+\mu_{2}\right) P\left(0, n_{2}, \tau\right)+\mu_{1} P\left(1, n_{2}-1, \tau\right)+$ $+\mu_{2} P\left(0, n_{2}+1, \tau\right)$

Analogue :
$P\left(n_{1}, 0, \tau+\Delta \tau\right)=P\left(n_{1}, 0, \tau\right)[1-\lambda \Delta \tau)\left[1-\mu_{1} \Delta \tau\right]+$
$+P\left(n_{1}-1,0, \tau\right) \cdot \lambda \Delta \tau\left[1-\mu_{1} \Delta \tau\right]+P\left(n_{1}, 1, \tau\right) \cdot \mu_{2} \Delta \tau[1-\quad \lambda \Delta \tau)[1-$ $\left.\mu_{1} \Delta \tau\right]+0(\Delta \tau)$
$\Rightarrow \frac{P\left(n_{1}, 0, \tau+\Delta \tau\right)-P\left(n_{1}, 0, \tau\right)}{\Delta \tau}=$
$=-\left(\mu_{1}+\lambda\right) P\left(n_{1}, 0, \tau\right)+\lambda P\left(n_{1}-1,0, \tau\right)+\mu_{2} P\left(n_{1}, 1, \tau\right)+\frac{0(\Delta \tau)}{\Delta \tau}$
Thus:
$\frac{d}{d \tau} P\left(n_{1}, 0, \tau\right)=-\left(\lambda+\mu_{1}\right) P\left(n_{1}, 0, \tau\right)+\lambda P\left(n_{1}-1,0, \tau\right)+$
$+\mu_{2} P\left(n_{1}, 1, \tau\right)$
Finally:
$P\left(n_{1}, n_{2}, \tau+\Delta \tau\right)=P\left(n_{1}, n_{2}, \tau\right)[1-\lambda \Delta \tau)\left[1-\mu_{1} \Delta \tau\right]\left[1-\mu_{2} \Delta \tau\right]+$
$+P\left(n_{1}-1, n_{2}, \tau\right) \cdot \lambda \Delta \tau \cdot\left[1-\mu_{1} \Delta \tau\right]\left[1-\mu_{2} \Delta \tau\right]+$
$+P\left(n_{1}, n_{2}+1, \tau\right) \cdot[1-\lambda \Delta \tau)\left[1-\mu_{1} \Delta \tau\right] \mu_{2} \Delta \tau+$
$+P\left(n_{1}+1, n_{2}-1, \tau\right) \cdot[1-\lambda \Delta \tau) \cdot \mu_{1} \Delta \tau \cdot\left(1-\mu_{2} \Delta \tau\right)+0(\Delta \tau) \Rightarrow$
$\Rightarrow \frac{P\left(n_{1}, n_{2}, \tau+\Delta \tau\right)-P\left(n_{1}, n_{2}, \tau\right)}{\Delta \tau}=$
$=-\left(\mu_{1}+\mu_{2}+\lambda\right) \cdot P\left(n_{1}, n_{2}, \tau\right)+\lambda P\left(n_{1}-1, n_{2}, \tau\right)+$
$+\mu_{2} \cdot P\left(n_{1}, n_{2}+1, \tau\right)+\mu_{1} P\left(n_{1}+1, n_{2}-1, \tau\right)+\frac{0(\Delta \tau)}{\Delta \tau}$
Passing to limit after $\Delta \tau \rightarrow 0$ obtain:
$\frac{d}{d \tau} P\left(n_{1}, n_{2}, \tau\right)=-\left(\lambda+\mu_{1}+\mu_{2}\right) \cdot P\left(n_{1}, n_{2}, \tau\right)+$
$+\lambda P\left(n_{1}-1, n_{2}, \tau\right)+\mu_{1} P\left(n_{1}+1, n_{2}-2, \tau\right)+\mu_{2} \cdot P\left(n_{1}, n_{2}+1, \tau\right)$
Conclusively, for the model of computer network with two series nodes, is obtained the following system of differential equation:

$$
\begin{aligned}
& \frac{d}{d \tau} P(0,0, \tau)=-\lambda P(0,0, \tau)+\mu_{2} P(0,1, \tau) \\
& \frac{d}{d \tau} P\left(0, n_{2}, \tau\right)= \\
& =-\left(\lambda+\mu_{2}\right) P\left(0, n_{2}, \tau\right)+\mu_{1} P\left(1, n_{2}-1, \tau\right)+\mu_{2} P\left(0, n_{2}+1, \tau\right) \\
& \frac{d}{d \tau} P\left(n_{1} 0, \tau\right)= \\
& =-\left(\lambda+\mu_{1}\right) P\left(n_{1}, 0, \tau\right)+\lambda P\left(n_{1}-1,0, \tau\right)+\mu_{2} P\left(n_{1}, 1, \tau\right) \\
& \frac{d}{d \tau} P\left(n_{1}, n_{2}, \tau\right)=-\left(\lambda+\mu_{1}+\mu_{2}\right) \cdot P\left(n_{1}, n_{2}, \tau\right)+ \\
& +\lambda P\left(n_{1}-1, n_{2}, \tau\right)+\mu_{1} P\left(n_{1}+1, n_{2}-1, \tau\right)+\mu_{2} P\left(n_{1}, n_{2}+1, \tau\right) \\
& \sum_{n_{1}, n_{2} \geq 0} P\left(n_{1}, n_{2}, \tau\right)=1, \quad \forall \tau>0(\text { complimentarily }
\end{aligned}
$$ condition)

In general case, this system is extremely difficult to resolve. In the stabile asymptotically balance is known that for any $n_{1}, n_{2} \geq 0$ there is, and id finite :

$$
\lim _{\tau \rightarrow \infty} P\left(n_{1}, n_{2}, \tau\right)=p\left(n_{1}, n_{2}\right)
$$

The probability distribution $p\left(n_{1}, n_{2}\right)$ of stabile asymptotically balance delivers a description of the average behavior of the computer network longterm. In this condition, the system above becomes:

$$
\left\{\begin{array}{l}
-\lambda p(0,0)+\mu_{2} p(0,1)=0 \\
-\left(\lambda+\mu_{2}\right) p\left(0, n_{2}\right)+\mu_{1} p\left(1, n_{2}-1\right)+\mu_{2} p\left(0, n_{2}+1\right)=0 \\
-\left(\lambda+\mu_{1}\right) p\left(n_{1}, 0\right)+\lambda p\left(n_{1}-1,0\right)+\mu_{2} p\left(n_{1}, 1\right)=0 \\
-\left(\lambda+\mu_{1}+\mu_{2}\right) p\left(n_{1}, n_{2}\right)+\lambda p\left(n_{1}-1, n_{2}\right)+ \\
+\mu_{1} p\left(n_{1}+1, n_{2}-1\right)+\mu_{2} p\left(n_{1}, n_{2}+1\right)=0 \\
\sum_{n_{1}, n_{2} \geq 0} p\left(n_{1}, n_{2}\right)=1
\end{array}\right.
$$

We consider:

$$
\begin{aligned}
& p\left(n_{1}, n_{2}\right)=0, \forall n_{1}<0 \text { or } \forall n_{2}<0 \\
& \mu_{1} p\left(0, n_{2}\right)=0 \\
& \mu_{2} p\left(n_{1}, 0\right)=0 .
\end{aligned}
$$

relations that are natural if we think of their interpretation.
Thus $\mu_{1} p\left(0, n_{2}\right)$ is the probability of processing a transition in node 1 , but in this node we have no transition, and so $\mu_{1} p\left(0, n_{2}\right)=0$.

Analogue $\mu_{2} p\left(n_{1}, 0\right)=0$.
In these hypothesis, the system of the first 4 equations proper to the state of stabile
asymptotically balance is reduced to a single equation [1, 2], which is:
$\lambda p\left(n_{1}-1, n_{2}\right)+\mu_{1} p\left(n_{1}+1, n_{2}-1\right)+\mu_{2} p\left(n_{1}, n_{2}+1\right)=$ $=\left(\lambda+\mu_{1}+\mu_{2}\right) p\left(n_{1}, n_{2}\right)$
From this relation, deduce that in case of stabile asymptotically balance, the flow of each state is conserved, that is for any state, the input flow coincides with output flow of this state.
To this relation adds the obvious relation $\sum_{n_{1}, n_{2} \geq 0} p\left(n_{1}, n_{2}\right)=1$.
If note $S_{n_{1}, n_{2}}$ the network state appropriate to the case in which in node 1 there are n_{1} transitions and in node 2 there are n_{2} transitions, in the relation above see that the states to which and from which have the transitions with state $S_{n_{1}, n_{2}}$ are:

$$
\begin{aligned}
& S_{n_{1}+1, n_{2}-1}, S_{n_{1}-1, n_{2}}, S_{n_{1}, n_{2}+1} \text { as inputs of state } S_{n_{1}, n_{2}} \\
& S_{n_{1}+1, n_{2}}, S_{n_{1}-1, n_{2}+1}, S_{n_{1}, n_{2}-1} \text { as outputs for } S_{n_{1}, n_{2}} .
\end{aligned}
$$

The interaction of these states is given by diagram in Fig. 3.

Fig 3
Because in any system in stabile balance, the flow rate of input in a state is the same with the flow rate of output from that state, and that is for any state of the system, results that in our case, by writing this relation of flow's preservation for state $S_{n_{1}, n_{2}}$, obtain:
Flow rate of input for :

$$
S_{n_{1}, n_{2}}=\lambda p\left(n_{1}-1, n_{2}\right)+\mu_{1} p\left(n_{1}+1, n_{2}-\right)+\mu_{2} p\left(n_{1}, n_{2}+1\right) .
$$

Flow rate of output from :

$$
S_{n_{1}, n_{2}}=\left(\lambda+\mu_{1}+\mu_{2}\right) p\left(n_{1}, n_{2}\right) .
$$

By condition of flow's preservation in $S_{n_{1}, n_{2}}$ obtain relation:
$\lambda p\left(n_{1}-1, n_{2}\right)+\mu_{1} p\left(n_{1}+1, n_{2}-1\right)+\mu_{2} p\left(n_{1}, n_{2}+1\right)==$ $\left(\lambda+\mu_{1}+\mu_{2}\right) p\left(n_{1}, n_{2}\right)$
which is actually the relation equivalent to the probability system in case of stabile asymptotically balance.
Notice that if we put into a rectangular network $\mathrm{n}_{1} \mathrm{On}_{2}$, the neighbor states for $S_{n_{1}, n_{2}}$, then every flow rate is well targeted, which is: $\underset{\sim}{\lambda}$ from left to right, \downarrow μ_{2} downwards and $\tau \mu 1$ direction SE-NV.

Since in the considered computer network with series queues, the two net nodes are independent, Jackson [1] comes with the idea of looking for solutions to the system corresponding to stabile asymptotic balance as a product, that is $p\left(n_{1}, n_{2}\right)=p_{1}\left(n_{1}\right) \cdot p_{2}\left(n_{2}\right)$, where $p_{\mathrm{i}}\left(n_{\mathrm{i}}\right)$ is the probability of having in node i, n_{i} transitions in state of stabile asymptotic balance and so:

$$
\begin{equation*}
\sum_{n_{1} \geq 0} p_{1}\left(n_{1}\right)=1 \text { si } \sum_{n_{2} \geq 0} p_{2}\left(n_{2}\right)=1 \tag{*}
\end{equation*}
$$

With this choice, the equation above becomes:
$\mu_{1} p_{1}\left(n_{1}+1\right) p_{2}\left(n_{2}-1\right)+\lambda p_{1}\left(n_{1}-1\right) p_{2}\left(n_{2}\right)+$
$+\mu_{2} p_{1}\left(n_{1}\right) p_{2}\left(n_{2}+1\right)=\left(\lambda+\mu_{1}+\mu_{2}\right) p_{1}\left(n_{1}\right) p_{2}\left(n_{2}\right)(1)$
For $n_{1}=n_{2}=0$ and using the hypothesis above, obtain the equation:

$$
\begin{aligned}
& \mu_{1} p_{1}(1) p_{2}(-1)+\lambda p_{1}(-1) p_{2}(0)+\mu_{2} p_{1}(0) p_{2}(1)= \\
& =\left(\lambda+\mu_{1}+\mu_{2}\right) p_{1}(0) p_{2}(0) \Leftrightarrow \\
& \mu_{2} p_{1}(0) p_{2}(1)=\lambda p_{1}(0) p_{2}(0) \Leftrightarrow \\
& p_{1}(0)\left[\mu_{2} p_{2}(1)-\lambda p_{2}(0)\right]=0 .
\end{aligned}
$$

We have the following situation possible:
1.If $p_{1}(0)=0$ in relation (1) above $n_{1}=0$ obtain:
$\mu_{1} p_{1}(1) p_{2}\left(n_{2}-1\right)+\lambda p_{1}(-1) p_{2}\left(n_{2}\right)+\mu_{2} p_{1}(0) p_{2}\left(n_{2}+1\right)=$
$\left(\lambda+\mu_{1}+\mu_{2}\right) p_{1}(0) p_{2}\left(n_{2}\right)$
Using the hypothesis above and $p_{1}(0)=0$ obtain: $\mu_{1} p_{1}(1) \cdot p_{2}\left(n_{2}-1\right)=0$
If $p_{1}(1)=0$ is demonstrated by induction that $p_{1}\left(n_{1}\right)=0$ for any $n_{l} \geq 0$.
If $p_{2}\left(n_{2}-1\right)=0$ results that $p_{2}\left(n_{2}\right)=0$ for any $n_{2} \geq$ 0.

Both situations are false, because they contradict relations (${ }^{*}$) above.

$$
\begin{equation*}
\text { 2.If } \mu_{2} p_{2}(1)-\lambda p_{2}(0)=0 \Rightarrow p_{2}(1)=\frac{\lambda}{\mu_{2}} p_{2}(0) \tag{2}
\end{equation*}
$$

With this value go in relation (1) after $n_{2}=0$.
Have: $\mu_{1} p_{1}\left(n_{1}+1\right) p_{2}(-1)+\lambda p_{1}\left(n_{1}-1\right) p_{2}(0)+$ $+\mu_{2} p_{1}\left(n_{1}\right) p_{2}(1)=\left(\lambda+\mu_{1}+\mu_{2}\right) p_{1}\left(n_{1}\right) p_{2}(0)$

Results: $\lambda p_{1}\left(n_{1}-1\right) p_{2}(0)+\mu_{2} p_{1}\left(n_{1}\right) p_{2}(1)=$
$=\left(\lambda+\mu_{1}\right) p_{1}\left(n_{1}\right) p_{2}(0)$
Replacing $p_{2}(1)$ with it's value from relation (2) obtain:
$\left.p_{2}(0)\left[\lambda p_{1}\left(n_{1}-1\right)-\lambda+\mu_{1}\right) p_{1}\left(n_{1}\right)\right]+\mu_{2} p_{1}\left(n_{1}\right) \frac{\lambda}{\mu_{2}} p_{2}(0)=0 \Rightarrow$ $\Rightarrow p_{2}(0)\left[\lambda p_{1}\left(n_{1}-1\right)-\mu p_{1}\left(n_{1}\right)\right]=0$.
If $p_{2}(0)=0$ is shown that above are obtained null values for p_{1} and p_{2}, which is false.

Thus, results that for $p_{1}\left(n_{1}\right)=\frac{\lambda}{\mu_{1}} p_{1}\left(n_{1}-1\right)$ for any $n_{1} \geq 1$.

Writing this relation as : $\frac{p_{1}(k)}{p_{1}(k-1)}=\frac{\lambda}{\mu_{1}}, k \geq 1$
and doing the product:
$\prod_{k=1}^{n_{1}} \frac{p_{1}(k)}{p_{1}(k-1)}=\left(\frac{\lambda}{\mu_{1}}\right)^{n_{1}}$ obtain $\frac{p_{1}\left(n_{1}\right)}{p_{1}(0)}=\left(\frac{\lambda}{\mu_{1}}\right)^{n_{1}}$
and so $p_{1}\left(n_{1}\right)=\left(\frac{\lambda}{\mu_{1}}\right)^{n_{1}} \cdot p_{1}(0)$
From relation: $\sum_{n_{1 \geq 0}} p_{1}\left(n_{1}\right)=1 \Rightarrow$
$\sum_{n_{1 \geq 0}}\left(\frac{\lambda}{\mu_{1}}\right)^{n_{1}} p_{1}(0)=1 \Rightarrow p_{1}(0)=\frac{1}{\sum_{n_{120}}\left(\frac{\lambda}{\mu_{1}}\right)^{n_{1}}}=1-\frac{\lambda}{\mu_{1},}$,
if $\frac{\lambda}{\mu_{1}}<1$, so that the series is convergence.
Note $\rho_{1}=\frac{\lambda}{\mu_{1}}$ and call ρ_{1} utilization factor in net node 1.
So for $\rho_{1} \in(0,1)$ have $p_{1}(n)=\left(1-\rho_{1}\right) \rho_{1}{ }^{n}, \forall n \geq 0,(3)$
Use this result in relation (1) after $n_{1}=0$.
Obtain:
$\mu_{1} p_{1}(1) p_{2}\left(n_{2}-1\right)+\lambda p_{1}(-1) p_{2}\left(n_{2}\right)+\mu_{2} p_{1}(0) p_{2}\left(n_{2}+1\right)=$ $=\left(\lambda+\mu_{1}+\mu_{2}\right) p_{1}(0) p_{2}\left(n_{2}\right)$.

From hypothesis result:
$\mu_{1} p_{1}(1) p_{2}\left(n_{2}-1\right)+\mu_{2} p_{1}(0) p_{2}\left(n_{2}+1\right)-\left(\lambda+\mu_{2}\right) p_{1}(0) p_{2}\left(n_{2}\right)=0$
Replacing p_{1} with value found in relation (**) obtain:
$\mu_{1} \frac{\lambda}{\mu_{1}} p_{1}(0) p_{2}\left(n_{2}-1\right)+\mu_{2} p_{1}(0) p_{2}\left(n_{2}+1\right)-$
$-\left(\lambda+\mu_{2}\right) p_{1}(0) p_{2}\left(n_{2}\right)=0$
$\Rightarrow p_{1}(0)\left[\lambda p_{2}\left(n_{2}-1\right)+\mu_{2} p_{2}\left(n_{2}+1\right)-\left(\lambda+\mu_{2}\right)\right]=0$
We've seen above that $p_{1}(0) \neq 0$ and so:
$\lambda\left[p_{2}\left(n_{2}-1\right)-p_{2}\left(n_{2}\right)\right]=\mu_{2}\left[p_{2}\left(n_{2}\right)-p_{2}\left(n_{2}+1\right)\right], n_{2} \geq 1$.
Writing this relation as:
$\lambda\left[p_{2}(k-1)-p_{2}(k)\right]=\mu_{2}\left[p_{2}(k)-p_{2}(k+1)\right], k \geq 1$
and making the sum of k from 1 to n_{2} obtain:
$\lambda \sum_{k=1}^{n_{2}}\left[p_{2}(k-1)-p_{2}(k)\right]=\mu_{2} \sum_{k=1}^{n_{2}}\left[p_{2}(k)-p_{2}(k+1)\right]$,
relation equivalent with:
$\lambda\left[p_{2}(0)-p_{2}\left(n_{2}\right)\right]=\mu_{2}\left[p_{2}(1)-p_{2}\left(n_{2}+1\right)\right]$
But from (2) $p_{2}(1)=\frac{\lambda}{\mu_{2}} p_{2}(0)$. Replacing this above and reducing the term $\lambda p_{2}(0)$ obtain:

$$
p_{2}\left(n_{2}+1\right)=\frac{\lambda}{\mu_{2}} p_{2}\left(n_{2}\right)
$$

In doing the above we obtain successively:
$\frac{p_{2}(k+1)}{p_{2}(k)}=\frac{\lambda}{\mu_{2}}, k \geq 0 \Rightarrow \sum_{k=0}^{n_{2}-1} \frac{p_{2}(k+1)}{p_{2}(k)}=\left(\frac{\lambda}{\mu_{2}}\right)^{n_{2}}$
$\Rightarrow \frac{p_{2}\left(n_{2}\right)}{p_{2}(0)}=\left(\frac{\lambda}{\mu_{2}}\right)^{n_{2}} \Rightarrow p_{2}\left(n_{2}\right)=\left(\frac{\lambda}{\mu_{2}}\right)^{n_{2}} p_{2}(0)$
from
$\sum_{n_{2 \geq 0}} p_{2}\left(n_{2}\right)=1 \Rightarrow \sum_{n_{2 \geq 0}}\left(\frac{\lambda}{\mu_{2}}\right)^{n_{2}} p_{2}(0)=1 \Rightarrow$
$\Rightarrow p_{2}(0)=\frac{1}{\sum_{n_{220}}\left(\frac{\lambda}{\mu_{2}}\right)^{n_{2}}}=1-\frac{\lambda}{\mu_{2}}$,
if $\frac{\lambda}{\mu_{2}}<1$ so that the series to be convergence.
Note $\rho_{2}=\frac{\lambda}{\mu_{2}}$ and call ρ_{2} factor of utilization in node 2.

Thus for $\rho_{2} \in(0,1)$ obtain:

$$
\begin{equation*}
p_{2}(n)=\left(1-\rho_{2}\right) \cdot \rho_{2}^{n}, \forall n \geq 0 \tag{4}
\end{equation*}
$$

Form relations (3), (4) and from :
$p\left(n_{1}, n_{2}\right)=p_{1}\left(n_{1}\right) \cdot p_{2}\left(n_{2}\right)$ obtain the solution for the state of stabile asymptotic balance of the model as being:

$$
p\left(n_{1}, n_{2}\right)=\rho_{1}^{n_{1}} \rho_{2}^{n_{2}}\left(1-\rho_{1}\right)\left(1-\rho_{2}\right), \forall n_{1}, n_{2} \geq 0,
$$

where $\rho_{1}=\frac{\lambda}{\mu_{1}} \in(0,1), \rho_{2}=\frac{\lambda}{\mu_{2}} \in(0,1)$.

Case $\mathbf{N}>2$.

Assuming now that the relation form the statements true for $\forall k=\overline{2, N-1}$.

For k= N-1 take the first $N-1$ series nodes and form the net Σ_{1} for which we know the solution:
$p\left(n_{1}, n_{2}, \ldots, n_{N-1}\right)=\prod_{i=1}^{N-1}\left(1-\rho_{i}\right) \rho_{i}^{n_{i}}$, according the hypothesis of induction.

Thus Σ is obtain connecting in series Σ_{1} with net node N, as in Fig. 4.

Figure. 4

Σ

ion of flow preservation in state $S_{n, n_{N}}$ and for resolving the obtained system we look for solutions like:

$$
p\left(n, n_{N}\right)=p(n) p_{N}\left(n_{N}\right)
$$

The preservation relation is:

$$
\begin{gather*}
\mu_{N-1} p(n+1) p_{N}\left(n_{N}-1\right)+\lambda p(n-1) p_{N}\left(n_{N}\right)+\mu_{N} \\
p(n) p_{N}\left(n_{N}+1\right)=\left(\lambda+\mu_{N-1}+\mu_{N}\right) \cdot p(n) p_{N}\left(n_{N}\right) \tag{5}
\end{gather*}
$$ diagram of flow between states (similar to case of two series net nodes)(see Fig.5) in which

$$
\begin{aligned}
& n-1=\left(n_{1}, \ldots, n_{N-2}, n_{N-1}-1\right) \text { and } \\
& n+1=\left(n_{1}, \ldots, n_{N-2}, n_{N-1}+1\right)
\end{aligned}
$$

Fig. 5

Using that $p(n)=\prod_{i=1}^{N-1}\left(1-\rho_{i}\right) \rho_{i}^{n_{i}} \quad$ (results from induction hypothesis) it will be obtained a relation of recurrence of order I for p_{N} and therefore: $\quad p_{N}\left(n_{N}\right)=\left(1-\rho_{N}\right) \rho_{N}^{n_{N}}, \quad$ where $\rho_{N}=\frac{\lambda}{\mu_{N}} \in(0,1)$.
Thus : $p\left(n_{1}, \ldots, n_{N-1}, n_{N}\right)=p\left(n, n_{N}\right)=p(n) p_{N}\left(n_{N}\right)=$
$=\prod_{i=1}^{N-1}\left(1-\rho_{i}\right) \rho_{i}^{n_{i}} \cdot\left(1-\rho_{N}\right) \rho_{N}^{n_{N}}=\prod_{i=1}^{N}\left(1-\rho_{i}\right) \rho_{i}{ }^{n_{i}}$.

Indeed, replacing $p(n)$ in relation (5) obtain:
$\mu_{N-1} \prod_{i=1}^{N-2} \rho_{i}^{n_{i}}\left(1-\rho_{i}\right) \cdot p_{N-1}\left(n_{N-1}+1\right) \cdot p_{N}\left(n_{N}-1\right)+$
$+\lambda \prod_{i=1}^{N-2} \rho_{i}^{n_{i}}\left(1-\rho_{i}\right) \cdot p_{N-1}\left(n_{N-1}-1\right) \cdot p_{N}\left(n_{N}\right)+$
$+\mu_{N} \prod_{i=1}^{N-2} \rho_{i}^{n_{i}}\left(1-\rho_{i}\right) \cdot p_{N-1}\left(n_{N-1}\right) \cdot p_{N}\left(n_{N}+1\right)=$
$=\left(\lambda+\mu_{N-1}+\mu_{N}\right) \prod_{i=1}^{N-2} \rho_{i}^{n_{i}}\left(1-\rho_{i}\right) \cdot p_{N-1}\left(n_{N-1}\right) \cdot p_{N}\left(n_{N}\right)$
We divide this relation to $\prod_{i=1}^{N-2} \rho_{i}^{n_{i}}\left(1-\rho_{i}\right)$ and
$\mu_{N-1} \rho_{N-1}^{n_{N-1}+1}\left(1-\rho_{N-1}\right) p_{N}\left(n_{N}-1\right)+$
$+\lambda \rho_{N-1}^{n_{N-1}^{-1}}\left(1-\rho_{N-1}\right) p_{N}\left(n_{N}\right)+$
$+\mu_{N} \rho_{N-1}^{n_{N-1}}\left(1-\rho_{N-1}\right) p_{N}\left(n_{N}+1\right)=$
$=\left(\lambda+\mu_{N-1}+\mu_{N}\right) \rho_{N-1}^{n_{N-1}}\left(1-\rho_{N-1}\right) p_{N}\left(n_{N}\right)$
Divide through $\rho_{N-1}^{n_{N-1}-1}\left(1-\rho_{N-1}\right)$ and obtain:
$\mu_{N-1} \rho_{N-1}^{2} p_{N}\left(n_{N}-1\right)+\lambda p_{N}\left(n_{N}\right)+$
$+\mu_{N} \rho_{N-1} p_{N}\left(n_{N}+1\right)=$
$=\left(\lambda+\mu_{N-1}+\mu_{N}\right) \rho_{N-1} p_{N}\left(n_{N}\right)$
Reduce the term $\lambda p_{N}\left(n_{N}\right)$ with $\mu_{N-1} \rho_{N-1} p_{N}\left(n_{N}\right)=\mu_{N-1} \frac{\lambda}{\mu_{N-1}} p_{N}\left(n_{N}\right), \quad$ divide with $\rho_{N-1}=\frac{\lambda}{\mu_{N-1}}$ and obtain:

$$
\begin{aligned}
& \mu_{N-1} \rho_{N-1} p_{N}\left(n_{N}-1\right)+\mu_{N} p_{N}\left(n_{N}+1\right) \\
& =\left(\lambda+\mu_{N}\right) p_{N}\left(n_{N}\right) \Leftrightarrow \\
& \lambda\left[p_{N}\left(n_{N}-1\right)-p_{N}\left(n_{N}\right)\right]= \\
& =\mu_{N}\left[p_{N}\left(n_{N}\right)-p_{N}\left(n_{N}+1\right)\right]
\end{aligned}
$$

a relation similar to the one form which we obtained p_{2}. Forwards, proceed as for p_{2} and finally obtain p_{N} as being $p_{N}\left(n_{N}\right)=\left(1-\rho_{N}\right) \rho_{N}^{n_{N}} \quad$ where $\rho_{N}=\frac{\lambda}{\mu_{N}} \in(0,1)$.

In order to obtain this result, it was also needed the relation $p_{N}(1)=\frac{\lambda}{\mu_{N}} p_{N}(0)$ which is get if in relation (5) put $n=0$ and $n_{N}=0$.

Obtain:
$\mu_{N-1} p(1) p_{N}(-1)+\lambda p(-1) p_{N}(0)+\mu_{N} p(0) p_{N}(1)=$
$=\left(\lambda+\mu_{N-1}+\mu_{N}\right) p(0) p_{N}(0) \Leftrightarrow$
$\Leftrightarrow p(0)\left[\mu_{N} p_{N}(1)-\lambda p_{N}(0)\right]=0$
$\Leftrightarrow p_{N}(1)=\frac{\lambda}{\mu_{N}} p_{N}(0)$
because $\mathrm{p}(0) \neq 0$.

Observations[1].

1) Jackson has shown that forma the product of the final relationship of a mathematical model is available also in a more general case, in which are allowed transitions between states form:

$$
S_{n_{1}, \ldots, n_{j}, \ldots, n_{N}} \rightarrow S_{n_{1}, \ldots, n_{j}+1, \ldots, n_{N}} \text {, a transition enters }
$$ from the environment directly to the queue of processor j .

$S_{n_{1}, \ldots, n_{i}, \ldots, n_{N}} \rightarrow S_{n_{1}, \ldots, n_{i}-1, \ldots, n_{N}}$, a transition leaves the system (computer net) through net node i.

$$
S_{n_{1}, \ldots, n_{i}, \ldots n_{j}, \ldots, n_{N}} \rightarrow S_{n_{1}, \ldots, n_{i}-1, \ldots n_{j}+1, \ldots, n_{N}}
$$

a transition passes from net node i straight to node j.
2) Also, Jackson has shown that the final solution is obtained as a product for a more general class of networks in which is allowed processing the transitions several times in a certain net node, that is allowing cycling the transitions between entering and leaving a certain net node.

3. Conclusion

This article presents a concrete modality to model systems for the particular case of computer networks with series queues, which is the mathematical method that leads to a equations system, sometimes impossible to resolve without imposing supplementary hypothesis which are, in some cases, extremely restrictive, hypothesis that ease up the model from the real modeled system.

In this case, working in the asymptotically stable equilibrium state, the differential equations system that's obtained, impossible to resolve in general, is reduced to a resolvable equations system, which will provide, through the probability distribution $p\left(n_{1}, n_{2}, \ldots, n_{N}\right)$, a description of the

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies

medium behaviour on long term of the computer networkwith series queues.

In the same way the other subclasses of Jackson network can be modeled, and also network type BCMP, BUZEN, etc and the theoretical results can be compared by mathematical models for performance indicators, such as: using a node, use two or more node in the same time, residence time of transactions in network, medium length of waiting tails, a node's efficiency and many other, with the results given by modeling through other methods, such as modeling trough Coloured Petri nets $[3,4]$.

References

[1]. R. F. Garzia, M. R. Garzia, "Network modelling, simulation and Analysis", Ed. Marcel Rekker, New York and Basel, 1990.
[2]. M. Popa, "Modelarea matematica a retelelor de calculatoare", Ed. Univ. of Bucharest, 2004
[3]. M. Popa, Mariana Popa., M. Dragan, "Modelling patient flow in a medical office by stochastic timed Coloured Petri Nets", the 3rd International Conference on Telecomunications, Electronics and Informatics, May 20-23, Ed. UTM, Chisinau 2010.
[4] M. Popa, M. Dragan, Mariana Popa, "Study the Markings Trap in the Coverage Graph of a Colored Petri Nets(CPN)", 16TH International Conference on Soft Computing, June 23-25, Brno, Czech Republic, 2010.

