THE INFLUENCE OF ENVIRONMENT TEMPERATURE VARIATION ON THE STRENGTH CHARACTERISTICS OF COMPOSITE MATERIALS TYPE "ALUCOBOND"

Constantin DULUCHEANU¹, Traian Lucian SEVERIN¹, Nicolai BANCESCU¹,

¹ "Ştefan cel Mare" University of Suceava, Faculty of Mechanical Engineering, Mechatronics and Management, University Street, No. 13, 720225, Suceava, Romania, EU. dulu@fim.usv.ro, severin.traian@fim.usv.ro, bancescu@fim.usv.ro

Abstract: In this paper the authors present an analysis of the influence of temperature variation on the strength characteristics of the composite material called "ALUCOBOND";, a material used in construction on plating exterior wall of buildings and the execution of ornamental ensembles for advertising purposes.

Keywords: composite material, environment, temperature, resistance

1. General consideration

The composite material called ALUCOBOND is made of aluminum plate of 0.5 mm, joined by a core of permanent polyethylene; blend is achieved at constant chemical and mechanical (hot-rolled and pressure) and the grip is perfect on all the material. This structure provides a surface rigidity of the composite material, resistance to bending, perfect flatness and ease of processing.

Even if they have a lightweight compared to other materials, ALUCOBOND boards have a very good resistance to breaking or bending, while the plates have exceptional qualities in terms of resistance at high pressures and buckling. Polyethylene core which is non-toxic have a good density and improves resistance to fire.

ALUCOBOND dampens vibrations of 9 - 10 times more efficiently than aluminum sheet; he behaved as an electromagnetic coating and for this reason is a very good solution for plating hospitals, airports, military bases, buildings in city centers etc. Also the manufacturers of these composite materials say that ALUCOBOND does not change the mechanical properties between -50 °C and +80 °C, [3]

2. Experimental details

Because this composite material is used for external plating of the buildings walls and the execution of ornamental ensembles for advertising purposes which is used as a support for various objects, the authors proposed to determine whether the environmental temperature changes affect its resistance properties.

To do this, lots of 10 pieces of 4 mm thick by ALUCOBOND were subjected to following laboratory thermal stresses:

- I. without thermal stresses (samples in delivery state of material);
- II. long cycle of heating-cooling;
- III. two long cycles of heating-cooling;
- IV. three long cycles of heating-cooling;
- V. six short cycles of heating-cooling.

A "long cycle" consisted of heating samples in an oven at 37 °C for one hour followed immediately by cooling to -30 °C for one hour, cooling done in a laboratory refrigerator existing in thermal treatments at "Stefan cel Mare" University Suceava. The "short cycle", heating and cooling were performed at the same temperature (37 °C and -30 °C), but times were held at that temperature were only 15 minutes. The samples were made in accordance with applicable standards (SR EN 10002-1:2002) [2].

After the planned thermal stresses, the samples were traction tested. These tests were conducted in Technology of Cold Pressing laboratory on a traction test machine of steel specimens (Figure 1), it is equipped with a linear displacement transducer which is connected with a strain gauge deck plate by acquisition board LabJack U12 and makes possible the transmission of values to a computer [4]. Using special software, the data transmitted can be automatically calculated and displayed

Figure 1. Traction test machine of steel samples

Acquisition and evaluation size program is made in LabView programming environment; it takes the sensor information in a chart representation as presented in Figure 2. The application contains a button to save data to a file type. ".dat" The charts of the two sizes are represented in different colors: red - "force" and green - "elongation".

Figure 2. Chart representation of the sizes results in the traction test

The values recorded in the file. ".dat" are open with Microsoft Office Excel program (Figure 3) are taken only force and elongation recorded values and placed in another Excel program that can generate the following representations charts: conventionally σ (ϵ); conventional σ (ψ), real experimental σ (ϵ), real experimental σ (ψ), real theoretically σ (ϵ), real theoretically σ (ψ), [1].

123	A B	0	D	E	F	G	н	E.	J	К	L	М	N	0	P	Q	R	S	T
1													122						-
2											<u> </u>)ata	int	ern	retati	on			
3												иси	1110	<u>up</u>	Tecati				
6	Ir. crt 10	9	s b0	Nr. forță (div.)	Nr. L (div)	Kf (N/div)	KI (mm/div)	Valoare F (N)	Valoare ∆L (mm)	3	Ψ	Lr - val. rup	ε rupere	Ψg	σ conv. (N/mm2)	σ rupere=σ gâtuire	σ real exp. (ε)	σ real teoretic (ε)	σ real exp. (Ψ)
7	1 50	0	4 13,05	0,019531	0,00488	64	6,02	24,99968	0,02939566	0,00059	0,000588	52,58	0,051	0,05131	0,478921073	25,74234483	0,479202637	25,75747909	0,479202637
8	2 50	0	4 13,05	0,019531	0,00488	64	6,02	24,99968	0,02939566	0,00059	0,000588		1	0,05184	0,478921073	25,74234483	0,479202637	25,75747909	0,479202637
9	3 50	0	4 13,05	0,014648	0,00488	64	6,02	18,74944	0,02940168	0,00059	0,000588			0,05184	0,359184674	25,74234483	0,359395887	25,75748219	0,359395887
10	4 50	0	4 13,05	0,024414	0,00489	64	6,02	31,24992	0,0294077	0,00059	0,000588			0,05237	0,598657471	25,74234483	0,599009574	25,75748529	0,599009574
11	5 50	0	4 13,05	0,014648	0,00489	64	6,02	18,74944	0,02941372	0,00059	0,000588			0,05342	0,359184674	25,74234483	0,359395973	25,75748839	0,359395973
12	6 50	0	4 13,05	0,019531	0,00489	64	6,02	24,99968	0,02941974	0,00059	0,000588			0,05342	0,478921073	25,74234483	0,479202867	25,75749149	0,479202867
13	7 50	0	4 13,05	0,014648	0,00489	64	6,02	18,74944	0,02942576	0,00059	0,000588			0,05342	0,359184674	25,74234483	0,35939606	25,75749459	0,35939606
14	8 50	0	4 13,05	0,019531	0,00489	64	6,02	24,99968	0,02943178	0,00059	0,000588			0,05342	0,478921073	25,74234483	0,479202983	25,75749769	0,479202983
15	9 50	0	4 13,05	0,014648	0,00489	64	6,02	18,74944	0,0294378	0,00059	0,000588	1		0,05342	0,359184674	25,74234483	0,359396146	25,75750079	0,359396146
16	10 50	0	4 13,05	0,014648	0,00489	64	6,02	18,74944	0,02944382	0,00059	0,000589	8		0,05342	0,359184674	25,74234483	0,35939619	25,75750389	0,35939619
17	11 50	0	4 13,05	0,009766	0,00489	64	6,02	12,50048	0,02944984	0,00059	0,000589			0,05342	0,239472797	25,74234483	0,239613846	25,75750699	0,239613846
18	12 50	0	4 13,05	0,009766	0,00489	64	6,02	12,50048	0,02945586	0,00059	0,000589			0,05342	0,239472797	25,74234483	0,239613874	25,75751009	0,239613874
19	13 50	0	4 13,05	0,009766	0,00489	64	6,02	12,50048	0,02946188	0,00059	0,000589			0,05342	0,239472797	25,74234483	0,239613903	25,75751319	0,239613903
20	14 50	D	4 13,05	0,014648	0,00489	64	6,02	18,74944	0,0294679	0,00059	0,000589			0,05342	0,359184674	25,74234483	0,359396363	25,75751628	0,359396363
21	15 50	D	4 13,05	0,014648	0,0049	64	6,02	18,74944	0,02947392	0,00059	0,000589			0,05342	0,359184674	25,74234483	0,359396406	25,75751938	0,359396406
22	16 50	0	4 13,05	0,014648	0,0049	64	6,02	18,74944	0,02947994	0,00059	0,000589			0,05342	0,359184674	25,74234483	0,359396449	25,75752248	0,359396449
23	17 50	0	4 13,05	0,019531	0,0049	64	6,02	24,99968	0,02948596	0,00059	0,000589			0,05342	0,478921073	25,74234483	0,479203502	25,75752558	0,479203502
24	18 50	-	4 13,05	0,019531	0,0049	64	6,02	24,99968	0,02949198	0,00059	0,000589			0,05342	0,478921073	25,74234483	0,4/9203559	25,75752868	0,4/9203559
25	19 50	-	4 13,05	0,024414	0,0049	64	6,02	31,24992	0,029498	0,00059	0,00059		-	0,05342	0,59865/4/1	25,74234483	0,599010655	25,/5/531/8	0,599010655
26	20 50	-	4 13,05	0,029297	0,0049	64	6,02	37,50016	0,02950402	0,00059	0,00059		-	0,05342	0,/183938/	25,74234483	0,/1881//8	25,/5/53488	0,71881778
21	21 50		4 13,05	0,043945	0,0049	64	6,02	56,2496	0,02951004	0,00059	0,00059	-	_	0,05342	1,077578544	25,74234483	1,078214532	25,/5/53/98	1,078214532
28	22 50	-	4 13,05	0,063477	0,00977	64	6,02	81,25056	0,05879132	0,00118	0,001174			0,05342	1,556524138	25,74234483	1,55835434	25,77261336	1,55835434
29	23 50	-	4 13,05	0,092773	0,00488	64	6,02	118,74944	0,02939566	0,00059	0,000588			0,05342	2,2/489348/	25,74234483	2,276230926	25,75747909	2,276230926
20	24 50	-	4 13,05	0,12207	0,00377	64	6,02	103 74076	0,05679152	0,00118	0,001174			0,05542	2,55520/550	25,74254465	2,550000545	25,77261556	2,336806343
22	25 50	0	4 12.05	0,151567	0,00466	64	6,02	227 50016	0,02555566	0,00035	0,000588			0,05542	4 549011494	25,74254465	4 555161202	25,75747505	4 EEE161202
22	20 50		4 12,05	0,165547	0,00377	64	6,02	201 20010	0,05879152	0,00118	0,001174	8	13	0,05542	5 2070/1752	25,74254465	4,555161265 E 20110040E	25,77261556	4,555161265 5 291109405
24	20 50	0	4 12.05	0.259729	0,00977	64	6,02 6.02	221 24992	0.05979122	0.00119	0.001174			0.05242	£ 245702000	25,74254465	6 252245440	25,75747505	6 252245449
35	29 50	0	4 13.05	0,297852	0.00977	64	6.02	381 25056	0.05879132	0.00118	0.001174	22		0.05342	7 303650575	25,74234483	7 3122384	25,77261336	7 3122384
36	30 50	0	4 13.05	0.336914	0.00977	64	6.02	431 24992	0.05879132	0.00118	0.001174			0.05342	8 26149272	25 74234483	8 271206802	25 77261336	8 271206802
37	31 50	0	4 13.05	0.371094	0.00488	64	5.02	475 00032	0.02939566	0.00059	0.000588			0.05342	9.099622989	25 74234483	9 104972777	25 75747909	9 104972777
38	32 50	0	4 13.05	0.410156	0.00977	64	6.02	524,99968	0.05879132	0.00118	0.001174	17		0.05342	10.05746513	25,74234483	10.06929097	25,77261336	10.06929097
39	33 50	0	4 13.05	0.449219	0.00977	64	6.02	575,00032	0.05879132	0.00118	0.001174	28	2	0.05342	11.0153318	25,74234483	11.02828392	25,77261336	11.02828392
40	34 50	0	4 13.05	0,483398	0.00977	64	6.02	618,74944	0.05879132	0.00118	0.001174			0.05342	11.85343755	25,74234483	11.86737513	25,77261336	11.86737513
41	35 50	0	4 13.05	0,522461	0,00977	64	6.02	668,75008	0.05879132	0.00118	0.001174			0,05342	12,81130421	25,74234483	12,82636808	25,77261336	12,82636808
42	36 50	0	4 13.05	0,561523	0,00977	64	6.02	718,74944	0.05879132	0.00118	0,001174			0,05342	13,76914636	25,74234483	13,78533649	25,77261336	13,78533649
43	37 50	0	4 13,05	0,595703	0,00977	64	6,02	762,49984	0,05879132	0,00118	0,001174	1		0,05342	14,60727663	25,74234483	14,62445225	25,77261336	14,62445225
44	38 50	0	4 13,05	0,625	0,00977	64	6,02	800	0,05879132	0,00118	0,001174			0,05342	15,3256705	25,74234483	15,34369083	25,77261336	15,34369083
45	39 50	0	4 13,05	0,65918	0,00977	64	6,02	843,7504	0,05879132	0,00118	0,001174	1		0,05342	16,16380077	25,74234483	16,18280659	25,77261336	16,18280659
46	40 50	0	4 13,05	0,688477	0,00977	64	6,02	881,25056	0,05879132	0,00118	0,001174			0,05342	16,88219464	25,74234483	16,90204517	25,77261336	16,90204517
47	41 50	0	4 13,05	0,722656	0,00977	64	6,02	924,99968	0,05879132	0,00118	0,001174	14		0,05342	17,72030038	25,74234483	17,74113638	25,77261336	17,74113638
48	42 50	0	4 13,05	0,74707	0,00977	64	6,02	956,2496	0,05879132	0,00118	0,001174		}	0,05342	18,31895785	25,74234483	18,34049777	25,77261336	18,34049777
49	43 50	0	4 13,05	0,78125	0,00977	64	6,02	1000	0,05879132	0,00118	0,001174	35		0,05342	19,15708812	25,74234483	19,17961353	25,77261336	19,17961353
50	44 50	0	4 13,05	0,800781	0,00977	64	6,02	1024,99968	0,05879132	0,00118	0,001174			0,05342	19,6360092	25,74234483	19,65909773	25,77261336	19,65909773
51	45 50	0	4 13,05	0,825195	0,00977	64	6,02	1056,2496	0,05879132	0,00118	0,001174			0,05342	20,23466667	25,74234483	20,25845912	25,77261336	20,25845912
52	46 50	0	4 13,05	0,844727	0,00977	64	6,02	1081,25056	0,05879132	0,00118	0,001174			0,05342	20,71361226	25,74234483	20,73796787	25,77261336	20,73796787
53	47 50	0	4 13,05	0,854492	0,00977	64	6,02	1093,74976	0,05879132	0,00118	0,001174			0,05342	20,95306054	25,74234483	20,9776977	25,77261336	20,9776977

Figure 3. Values recorded in the file ".dat"

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies

Sample

lots

I

Π

III

IV

Tabel 1. Experimental results

[MPa]

27,74

27,66

26,78

26,14

 σ_{max}

[%]

100

99,72

96,54

94,23

 σ_r

[%]

100

99,70

97,05

94,06

[MPa]

26,76

26,68

25,97

25,17

3. Results and discussion

After thermal stresses according to schedule, the samples were subjected to traction tests, results are presented in Table 1 and Figures $4 \div 6$.

Figure 4. Graphical representation of experimental results for sample 3 in group IV

Figure 5. The influence of thermal stresses on σ_{max}

Analyzing the results is found a reduction of the resistance characteristics from 27.74 MPa for σ_{max} , on samples in delivery state (group I), to 26.14 MPa for samples in group IV (samples subjected to three long cycles of heating-cooling), that corresponds to a reduction of 5.77%, in the case of σ_r values, the decline was from 26.76 MPa to samples from group I to 25.17 MPa for those in group IV, ie 5.95% reduction. Similar results were recorded for specimens in group V were subjected to six short cycles of heating and cooling: $\sigma_{max} = 26.40$ MPa (4.83% reduction) and $\sigma_r = 25.53$ MPa (4.60% reduction).

4. Conclusions

Composite material type ALUCOBONT is used in plating exterior walls of the buildings and the execution of ornamental ensembles for advertising purposes which is used as a support for various objects. To check reaction of environmental temperature changes the samples for traction test were subjected to thermal cycles involved heating at 37 °C and cooling to -30 °C, maintaining these temperatures for 60 minutes (cycle "long") and 15 minutes (cycle "short").

The analysis of the results was a decrease in resistance characteristics (σ_{max} and σ_r) with values contained between 0.3% and 5.77%, depending on the number of heating and cooling cycles and applied times to maintain use.

References

- [1] Severin, L., Iacob, D., Severin, T.L., *Tehnologia presării la rece*, Editura Universității Suceava, ISBN 973-666-149-0, Suceava, 2005.
- [2] SR EN 10002-1:2002.
- [3] * * *, www.geplast.ro.
- [4] * * *, www.labjack.ro.