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Abstract: To gain expert insight in the inner workings and pitfalls ofcommercial lifetime analysis
software, the authors created an open source alternative with asubset of analysis tools and made it freely
available as a package for the R statistical software, called the Weibull Toolkit for R.  This articlefocuses
on creating pivotal confidence bounds using Monte Carlo simulation for B-lives from a Weibull model.
These bounds were suggested by Lawless (ref. [1]) and are recommended for small sample sizes of
(nearly) complete databy Abernethy and Fulton(ref. [2], [3]).  Fully functional and annotated R code is
presented, derived from the toolkit’s codebase.  For the latest version of this document, check ref. [4].
For more in-depth treatment of the Weibull analysis with R, check ref. [5].
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1 Introduction

1.1 The FATIMATProject
FATIMAT (FATigue In MATerials) (ref. [6])is

a  completed  PWO  project  (ref.  [7])  supported  by
KAHOSint-Lieven (ref. [8]) that investigated
cheaper alternatives to servo hydraulic dynamic
testing machines, like servo pneumatic (ref. [9])
and electromechanical spindle actuator machines.

Products can be tested in various ways: for
example an engine mount for fixing car engines to
a chassiscan be tested by cyclically compressing it
between 10 [mm] and 20 [mm] on a Zwick/Roell
EZ020 high speed electromechanical spindle
actuator ata load frequency of 3 [Hz].  After some
time, the specimen will show signs of wear-out (in
this case oil leakage) that are detected by the
machine.   The  test  is  then  halted  and  the  failure
time  is  recorded.   This  test  is  repeated  (under
identical loads and circumstances!) for a number of
specimens.

One of the subprojects of FATIMAT was to
analyze these failure data using the Weibull
lifetime distribution for drawing conclusions on the
general reliability of the specimens.Commercial
packages such as Reliasoft’sWeibull++ (ref. [10])
and superSMITHWeibull (ref. [3]) were evaluated,
but for gaining expert insight the authors created
their own software: the WeibullToolkit (ref. [11])
for the statistical software R (ref. [12]).

1.2 The Two-Parameter WeibullDistribution

The two-parameter Weibull model is widely
used in the field of reliability engineering, because
it allows useful analysis with extremely small
sample  sizes  (two  failures  or  less).   The  Weibull
model covers many other distributions (either
exactly or approximately) like the(log-)normal and
exponential.Also, an informative  graphical plot
can   be  created  that  helps  to  convey  the  analysis
results to non-statisticians like engineers and their
managers.  In many cases, a two-parameter
Weibull model is sufficient for accurately
describing failure data. Its cumulative distribution
function (c.d.f.) is given by:

( ) = 1 e (1)

The ‘shape’ parameter  indicates the type of
failure: < 1 is a sign of infant mortality while > 1
is  a  sign  of  wear  out  failures.  =  1  suggests  a
constant  failure  rate,  not  related  to  lifetime.   The
‘scale’ parameter , also called the ‘characteristic
life’represents  the  age  at  which  63.2  [%]  of  the
specimen have failed.

1.3 The R Statistical Programming Language

(from the Rhomepage, ref. [12]:) “R is a
language and environment for statistical computing
and graphics.  It is a GNU project which is similar
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to the S language and environment which was
developed at Bell Laboratories (formerly AT&T,
now Lucent Technologies) […] R provides a wide
variety of statistical [...] and graphical techniques,
and is highly extensible.”

R can be downloaded with no cost from its
homepage and can be installed on most computers.
It is essentially a console-like application where
the user enters commands at the prompt.  Multiple
commands  can  be  scripted  and  stored  in  a  plain
text file, making complete applications possible.
Some graphical interfaces for R, and some
dedicated R code editors like Tinn-R (ref. [13]) are
available, making R easier to use.

1.4 The WeibullToolkit in R

The WeibullToolkit is a package for the R
statistical programming language.  It was initially
conceived for doing analysis on the very simple
reliability problem of complete, uncensored data,
but its feature set and capabilities are continuously
updated.In this paper, its code is demonstrated
using simplified toolkit functions: just copy and
paste the code in an open R console.More details
on the Weibull toolkit can be found under ref. [5]
and [14].

The WeibullToolkit is hosted online at
Sourceforge (ref. [11]) and can be downloaded as
an installable package.  The source code can be
browsed online (ref. [15]) or downloaded using the
‘Git fast version control’ system (ref. [16]).

2 Entering Data in the R Console

Let us assume that eight engine mounts were
tested under the previously mentioned conditions
(cyclic compressive sine wave load alterations
between  10  [mm]  and  20  [mm],  3  [Hz],  same
environmental temperature and humidity, …).The
recorded observations are 149971, 70808, 133518,
145658, 175701, 50960, 126606 and 82329 cycles.
All  specimen  were  tested  to  failure  (in  this  case:
failure by oil leakage) creating a so-called
complete dataset.  The data is imported in R by
opening the R console and entering the following
code at the prompt:

### Entering failure data ###
d <- data.frame(
  time=c(149971, 70808,133518,
  145658, 175701, 50960,
  126606, 82329), event=1)

This creates a table-like variable named d of the
‘dataframe’class, with two columns: d$time and
d$event.The latter represents the event at the
time of observation: here, all the specimens failed,
corresponding with event ‘1’ or ‘died’.  Just type d
followed by <ENTER> at the prompt to display
the contents of d(note that help is available for
data.frame and all other functions by typing
?data.frame followed  by  <ENTER>  at  the
prompt).

2.1 Censored Data

In many cases, mechanical-dynamical testing
means only a  few specimens are tested (3-8)  until
failure, after which the failure time is recorded.
This creates a ‘complete’ or ‘uncensored’ dataset.
Sometimes an upper test duration limit is enforced,
after  which  unfailed  specimen  are  taken  from  the
machine and labelled as ‘survived’.  This kind of
censored data is called ‘right censored’ data or
‘suspended’ data.

The WeibullToolkit can handle this type of
censored data, but for simplicity, this (important)
subject is not treated in this article and the
presented code does not support it; check out ref.
[5] for a more detailed treatment.

3 CreatingaWeibullPlot
The goal of the Weibull plot is to provide a

useful 2D representation of the observations.  On
the vertical axis, the ‘unreliability’ of the
specimens is found while on the horizontal axis
one finds the observation time.  The double
logarithmic scale of the Weibull plot's vertical axis
together with the horizontal axis’ logarithmic scale
makes  the  Weibullc.d.f.  (eq.  [1])appear  as  a
straight line (fig. [1]).

3.1 Median Rank Regression
To create the straight line representing the

sample’s  and , a vertical plotting position is
assigned to the ordered observation times
(‘ranking’).These ranksare equivalent to the
‘unreliability’ of the specimens’ population.  Then,
by means of simple linear least-square regression
on transformations of the observations and median
ranks, the Weibull parameter estimates are
calculated from the data points.Several methods
exist for the rank assignment (Hazen’s, Bernard’s,
mean ranks) but here the inverse of incomplete
beta function is used, which is considered the best
method.
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For small and moderate sample sizes (2-100)
with few or no censoring it is always best practice
to determinethe estimates usingmedian rank
regression (MRR) in favour of other techniques
like maximum likelihood estimation (MLE) (ref.
[2]).Continue by running the following code to
assign median ranks to the previously entered
failure data (note that for this uncensored data the
d$event column is not used or needed,
simplifying the ranking process):

### Ranking failure data ###
mrank.ob <- function(j,f){
    r <- qbeta(0.5,j,
      f-j+1);r}
mrank.data <- function(d){
  n <- nrow(d)
  d$rank  <- rank(d$time,"first")
  d <- d[order(d$rank), ]
  d$mrank <-
    mrank.ob(d$rank, n);d}
print(d <- mrank.data(d))

The ranking is done by theqbeta() function,
the inverse of the incomplete beta function and part
of the standard libraries of R.  The dataframed now
holds the median ranks for each observation in the
d$mrank column, as shown below.

    time event rank      mrank
6  50960     1    1 0.08299596
2  70808     1    2 0.20113119
8  82329     1    3 0.32051897
7 126606     1    4 0.44015520
3 133518     1    5 0.55984480
4 145658     1    6 0.67948103
1 149971     1    7 0.79886881
5 175701     1    8 0.91700404
>

After  ranking  the  observations,  a  line  can  be
fitted through the data points, calculating the
Weibull parameter estimates.Continue by running
the following code to fit a line through the data
points:

### Median Rank Regression ###
F0inv<- function(p){
log(log(1/(1 - p)))}
fwb <-
lm(log(d$time)~F0inv(d$mrank),d)
beta <- 1/coef(fwb)[2]
eta <- exp(coef(fwb)[1])
print(paste("beta=",signif(beta)))

print(paste("eta =",signif(eta)))

The lm() function fits a straight line by fitting
log(d$time) on a transformation of the median
ranks.The F0inv()transformation, together with
the logarithmic transformation of the observations
allow treating the soughtWeibullc.d.f. as a straight
line, making a line fit possible (the transformations
can  be  derived  from  eq.  [1]  and  will  result  in

( ) log  log ),   which  is  of  the
same structure as the standard line equation

).
Note that here it is the observations that are

fitted on the ranks (X-on-Y regression), and not
vice-versa (Y-on-X, as is standard in most
implementations of least square fitting).It is good
practice to fit the variable with the most variability
(the observations) on those with less variability:
the values of the median ranks are exactly defined
and do not depend on the actual values of the
observations, only on their  positions in the list of
ordered lifetimes, and the total number of
observations!

Call:
...
[1] "beta= 2.58128"
[1] "eta = 132512"
>

3.2 The WeibullPlot

The WeibullToolkit automates all of the above
steps.  For convenience however,the stand-alone
code for a simplified version of the Weibull plot is
presented here.  Because R lacks native support for
automatically transforming the vertical axis to the
double logarithmic scale, this must be done
manually with the F0inv() function (logarithmic
transformations are supported by the log=”x”
parameter).It will be used frequently with most
graphical functions in this article.Continue by
running the following code to produce aWeibull
plot for the given example:

### Simplified Weibull plot ###
options(scipen=10) # no scientific
                   # notation
plot(y=F0inv(d$mrank),x=d$time,
  log="x",axes=F,lwd=2,cex=1.2,
  main="Engine mount cyclic test",
  xlim=c(5000,500000),
  ylim=F0inv(c(0.01,0.99)),
  xlab="time",ylab="Unrel. [%]")
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curve(add=TRUE,lwd=2,
  beta*log(x)-beta*log(eta))
ygrid <-
  c(1:9,seq(10,90,10),91:99)
axis(2,F0inv(ygrid/100),
  ygrid,lwd=2);axis(1,lwd=2)
abline(v=c(5000,seq(1e4,1e5,1e4),
  seq(1e5,5e5,1e5)),
  h=F0inv(ygrid/100))
abline(lty=2,
  h=F0inv(ETA <- 1-exp(-1)))

Figure 1:SimplifiedWeibull plot, showing the median
rank regression (MRR) fitted line, representing the
Weibull parameters  and .

After plotting the median ranks versus the
observations, the curve()function draws a
straight line withbeta = andeta = . Note that
an identical line can be plotted by substituting
curve(...) with the following code, where in
the argument of F0inv() one  recognises  the
Weibullc.d.f. from eq. [1].

### Alternative curve() method ###
curve(add=TRUE,lwd=2,
F0inv(1-exp(-(x/eta)^beta)))

Grid lines are plotted at horizontal and vertical
plot position (vertical positions are listed in
ygrid).  The 63.2 [%] (dashed) unreliability line
is also plotted: the point of its intersection with the
fitted line provides the characteristic life of the
distribution, .

4 B-life

When the Weibull plot is created, predictions of
the failure behaviour of the specimenspopulation
can be made.

The  B-life  is  the  age  at  which  a  certain
percentage of the investigated populationis
expected to fail (based on the analyzed sample!).
For example, the B10-life for the population of
engine mounts can be read from the plot and
isapprox. 55500 cycles (the number following the
capital ‘B’ indicates the unreliability percentage).
The B1-life is approx. 22300 cycles. Just draw a
horizontal line at the 10 [%]unreliabilityand find
the intersection with the fitted (straight) line.Then,
read the age from the horizontal axis.Run the lower
code for marking the B10 life:

### Marking the B10 B-life ###
abline(lwd=2,lty=2,
v=55500,h=F0inv(0.1))

In  R,  the  B-lives  are  very  easily  calculated  by
means of the qweibull(p,beta,eta)
function which is part of the R standard libraries.It
calculates the pthquantile from the Weibull model
described by and .  Executing
qweibull(c(0.1,0.01),beta,eta)calcul
ates the B10 and B1 life, respectively:

[1] 55415.93 22299.16
>

5 Confidence in Predicted B-lives

5.1 Definition of Confidence Interval

It is evident that B-livesbased on Weibull
parameter estimates from large sample sizes are to
be taken more seriously than those based on two or
three observations; small samples contain very
limited lifetime information.To get an indication of
the confidence that one should have on an
estimated B-life, a confidence interval can be
calculated.  A90 [%]confidence interval for a B-
life has the following meaning:

“When the B-life would be estimated over and
over again from samples similar to the original
one, then the real, unknown B-life of the
specimens population will, with a 90 [%]
frequency, be situated inside the 90 [%] confidence
interval.”

A 90 [%] confidence interval is limited by two
bounds,  who  can  also  be  described  as  –  at  the
lower side – thelower confidence bound of a
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95 [%] confidence interval with no upper limit
(100 [%]), and – at the upper  side – the upper
confidence bound of a 95 [%] confidence interval
with no lower limit (0 [%]).

This  means  that  the  real,  unknown  B-life
exceeds the lifetime at the lower confidence
boundwith a 95 [%] frequency.  Also: the real,
unknown  B-life  will,with  a  5  [%]  frequency,  be
smaller than the lifetime at the lower confidence
bound.  The latter shows that there is still a small
chance that the actual B-life turns out to be worse
than anticipated by the confidence bounds!

5.2 Usage

According to the method demonstrated in this
article the real, unknown B10 life for the provided
example lies between approx.24500 and 87000
cycles, with 90 [%] confidence level.  The B1-life
(estimated at 22300 cycles) liesin a big  4700 –
50200 cycles interval, with 90 [%] confidence
level.

Generally, confidence levels of 90 [%] are used
and silently implied.  In the automotive industry, a
confidence level of 50 [%] is often used, meaning
that the confidence concept isnot used at all but B-
lives are  read straight  from the fitted line.   In  this
case  they  rely  on  large  sample  sizes  for  reliable
predictions. Much higher confidence levels are
used (90 [%] to 99.9 [%] or more) in the medical
and aircraft industry.

The presented confidence limits widen
dramatically when the sample size decreases.
Although still valid, it is clear that the interval will
be so wide that it could be of little practical use:
increasing the sample size is the only remedy
against wide confidence intervals.

5.3 Calculating Confidence Bounds
To  obtain  a  lower  bound  for  a  90  [%]

confidence bound for a B10 life, one must find the
5th percentile of the distribution of the B-lives at
the given (10 [%]) uncertainty.  This distribution is
not easily described and it is, except for complete
or  ‘Type  II’  censored  data  (where  all  the  unfailed
specimens are censored at the time of the latest
failure) difficult or impossible to calculate
analytically (ref. [1]).  Some methods approximate
this distribution by a well known distribution or
apply transformations to the B-lives.

Confidence bounds come in a great variety:
beta-binomial bounds, Fisher’s matrixbounds,
likelihood ratio bounds, Monte Carlo pivotal
bounds and bootstrap bounds are the most popular.

The first are very easily calculated (even by hand)
but cannot be extrapolated to lower unreliability’s;
precisely where the reliability engineer needs
them.  Abernethy (ref. [2]) concludes that Monte
Carlo pivotal bounds are best practice when
median rank regression is used, given that the
needed computer power is available.  For larger
sample sizes (> 400), likelihood ratio bounds for
MLE  or  MLE-RBA  based  Weibull  estimates  are
faster  to  calculate.   This  article  describes  how  to
calculate the Monte Carlo pivotal bounds.

5.4 Straightforward Monte Carlo Bounds
It would make sense to calculate the confidence

interval of a B10 life using the following Monte
Carlo based method:

Calculate the parameter estimates  and
from the original sample , , …,  with
sample size n, as explained earlier.
Create  a  lot   (2000 <= R<= 5000)of synthetic
samples (samen) by randomly generating
synthetic observations based on  and ,
resulting in = ( , … , ) , ( , … , ) ,
… , ( , … , ) .   In  R this  is  accomplished by
repeating the
rweibull(n,beta,eta)functionRtimes.
Find the synthetic Weibull parameters
estimates  and for all the synthetic
samples, , … , and =

, … , .
Calculate the B10 life for each synthetic
Weibull plot, resulting in B10 .. = B10 ,
B10 , … , B10 by repeating
qweibull(0.1,beta,eta)for all  and

.
Calculate the 5th and 95thpercentile (for a
90 [%] confidence interval) from the empirical
distribution of 10  using the
quantile() function.  These values
represent the lower and upper confidence
bounds.

The above straightforward method turns out to
provide too optimistic (narrow) intervals,
especially  for  small  sample  sizes  (n< 20).  The
reason is that the distribution of the synthetic B10
lives (from which one calculates the 5th and 95th

percentiles) depends too much on the real,
unknown values of  and . The above
calculations are based on estimates and , who
themselves become less accurate with smaller
sample sizes.  The deviations of these estimates
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from theirreal, unknown values should be reflected
in the range of the confidence intervals, but they
are  not.   When  bigger  sample  sizes  are  used,  the
estimates are closer to their true values, making
theseconfidence bounds more realistic, however.

5.5 Monte Carlo Pivotal Confidence Bounds
A  better  approach is  to  derive the 5th and 95th

percentiles from a ‘pivotal’ quantity: this is a
quantity that does not depend on the underlying
true and unknown distribution parameters  and .
Lawless  (ref.  [1])  supplies  a  pivotal  quantity  for
determining B-life distributions:

= (2)

Where = log ( ), = log  and
= 1/ . isthe time where the unreliability is
= ) from  eq.  [1];  the  Weibullc.d.f.  for

the real, unknown parameters  and .   Otherwise
said, ( ) which is the inverse of the
Weibull c.d.f..Practically,  is the B(100*p)-life
where a confidence bound is to be calculated for.

By definition, ZP does not depend on unknown
parameters, meaning that its distribution formstays
the same regardless of the actual values of  and .

The  pivotal  can  therefore  be  calculated  by
arbitrary setting  =  = 1 (or u = 0 and b = 1) for
further calculations.

Recall: ( ) (3)

Let = log , and with  =  = 1:

= log ( ; 1, 1) = log ( )  (4)

Eq. [4] can now be calculated for it represents the
inverse of the standard Weibullc.d.f. (eq. [1]) and
results in:

= log log (5)

To determine the empirical distribution of ,
Monte Carlo methods are used again:

Create a lot (2000<= R <= 5000) of synthetic
samples (same size as the original sample) by
randomly generating synthetic observations
from the standard Weibull model (  =  = 1).
Find the synthetic standard Weibull parameter
estimates = log ( )and = 1/

for all the synthetic samples,
giving )and ).

Calculate all pivotals  using a combination
of eq. [2] and [5]:

( ) = ( )

( )
(6)

The empirical distribution of these pivotals can
now be calculated.  To calculate the bounds for a
90 [%] confidence interval for the B10 life, on
takes the q=5th and q=95thpercentile of Z(p=0.10)
and calculates the corresponding B-life with a
rearranged eq. [2]:

) = log ( ) ) (7)

) = e ) (8)

Continue with the next code block to load the
pivotals() function:

### Pivotals function def. ###
MC<- function(n){
  std <- data.frame(
time=rweibull(n,1,1),
event=1)
  std <- mrank.data(std)
  fwb <- lm(log(std$time)~
F0inv(std$mrank),std)
c(u0_hat=coef(fwb)[1],
b0_hat=coef(fwb)[2])}
pivotals<- function(r,R,unrel){
  piv <- as.data.frame(
t(replicate(R,MC(r))))
  wp <- F0inv(unrel)
Zp <- function(wp){
((piv$u0_hat-wp)/piv$b0_hat)}
piv <- cbind(piv,sapply(wp,Zp))
  names(piv) <-c("u0_hat",
"b0_hat",signif(unrel))
piv}

The MC() function calculates and returns one
pair of  and  by fitting a Weibull line trough
a  synthetic  sample  from  the  standard  Weibull
distribution.  The pivotals() function repeats
MC() for R times (usually R=2000),applies eq.
[6] with sapply() on all  and  and binds
the pivotalsto the pivdataframein an extra
column.
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Note that wp<- F0inv(unrel)gives the
same results as wp<-
log(qweibull(unrel,1,1)), showing the
relation with the standard Weibull model and the
calculation of B-lives.Proceed by calculating the
pivotals for determining the B10 life’sconfidence
interval, based on the exemplary samplewith size
n=8:

###B10 pivotals calculation ###
piv <- pivotals(8,2000,0.1)
head(piv,3);tail(piv,3)

In the third column of the pivdataframe, one
can find the 2000 pivotal quantities (only a few are
displayed with the head() and tail()
functions).Continue by calculating the pivotal
percentiles and the actual confidence intervals:

### B10 pivotal conf. bounds ###
tp_low <- exp(log(eta)-quantile(
piv[,'0.1'],0.95)/beta)
tp_upp <- exp(log(eta)-quantile(
piv[,'0.1'],0.05)/beta)
print(paste(
"B10 90[%] CI = (",
signif(tp_low),",",
signif(tp_upp),")"))
points(pch=3,lwd=2,cex=2,
   x=c(tp_low,tp_upp),
   y=rep(F0inv(0.1),2))

Eq.  [8]  is  executed  twice  for  the  5th and 95th

percentile.  Finally, the pivotal confidence interval
for the B10 life is calculated and displayed, and
added to the plot:

[1] "B10 90[%] CI =
( 23931.3 , 86688.7 )"
>

Note that recalculated bounds will never be
exactly identical because of the Monte Carlo
variability.  For lower B-lives like B1, many
replications like R=5000 or more may be
necessary.  If repeatable results are needed, one
can run set.seed(1) before all code to lock the
random number seed value.

Repeating the above steps for a number of
unreliability levels and connecting the points so
that a curve emerges is the next logical step; these
are the pivotal confidence bounds as plotted in the
WeibullToolkit:

### Plot pivotal conf. bounds ###
pivotal_CB<- function(piv,CL){
unrel <- as.numeric(names(
piv[,c(-1,-2)]))
rdf <- data.frame(unrel=unrel,
row.names=unrel)
  Tp <- function(Zp,conf){
  exp(log(eta)-quantile(
Zp,conf)/beta)}
rdf <- cbind(rdf,
lower =sapply(piv[,c(-1,-2)],
Tp,1-(1-CL)/2),
upper =sapply(piv[,c(-1,-2)],
Tp,(1-CL)/2))
rdf}
piv<- pivotals(8,2000,ygrid/100)
CB <- pivotal_CB(piv,0.90)
lines(lwd=2,
CB$lower,F0inv(CB$unrel))
lines(lwd=2,
CB$upper,F0inv(CB$unrel))

Figure 2:Weibull plot with Monte Carlo pivotal
confidence bounds for a  90 [%] confidence level.

The B10 confidence intervals can now be read
from the graph in the same way as the regular B10
lives.

6 Conclusion

The article demonstrates the inner workings of
the Weibull Toolkit for R, an open source
reliability and lifetime data analysis package.
After demonstrating R code for calculating the
Weibull parameters for complete lifetime data
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using the median rank regression method,Monte
Carlo pivotal confidence bounds are discussed and
calculated.  Where appropriate, alternative
calculation methods are briefly mentioned and
discussed. The calculation of the pivotal quantities
is clarified in detail and applied in functional R
code, culminating in a simplified version of the
Weibull plot as generated by the Weibull toolkit.
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8 Further reading
Chi-Chao Lui, A Comparison Between The
Weibull And Lognormal Models Used To
Analyse Reliability Data,  dissertation from
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William  Q.  Meeker  and  Luis  A.  Escobar,
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