RESEARCH ON ABRASIVENESS OF MATERIALS USED ON FINISHING METAL ALLOYS. PART I

Marius-Daniel BĂEȘU¹, Mircea CIOBANU²

¹Universitatea "Ștefan cel Mare" Suceava, marius.baesu@fim.usv.ro. ² Universitatea "Ștefan cel Mare" Suceava, mircea@fim.usv.ro

Abstract: In magneto-abrasive processes, the working environment consists of magnetoabrasive powder (ferromagnetic particles such as ferrite or composite powders) or from suspensions, namely ferrofluids or magneto-rheological liquids. Abrasive materials are natural or synthetic crystalline substances with high hardness, used for grinding or polishing materials. To achieve the required materials for finishing metal alloys, metal waste (steel and iron chips) granite, grinding wheels and siliceous sand waste were used. This article aims to present the logistics used to obtain the materials, study the abrasiveness of different materials and their combinations, and to determine the final roughness of the samples used.

Keywords: abrasiveness, roughness, abrasive materials

1. General Introduction

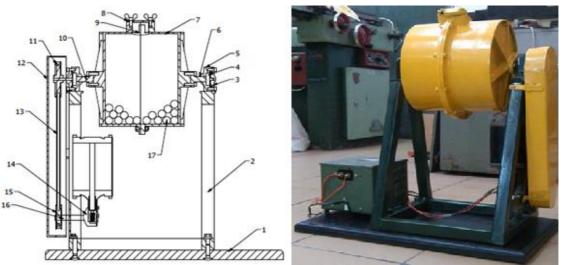
The general feature, common to abrasive processes, is the use of abrasives (powders or granules) arranged in a given carrying environment. It may be possible to make different abrasive environments, which, depending on the way they are constituted, make the difference between the technological processes. [7]

Abrasive grains can be placed in a binder and compacted in abrasive bodies with welldefined forms, used in regrinding operations. This way, an abrasive environment is created, having wide spread use.

Abrasive materials are presented in form of very tough granules, with sharp edges and tips, which disengage very small chips from working areas [7].

In order to detach the chips, the abrasive grains are driven in a relative movement against the work piece, being embedded in a solid object (abrasive discs), in a liquid (suspensions, paste), in a steam shot or in a magnetic field.

In order to establish the maximum performance of these working environments and to improve the quality of the surfaces a collaboration between metallurgists and technologists is needed [1].


2. The equipment used in manufacturing and determining materials abrasiveness and roughness

2.1 Equipment used for obtaining metal powder [2], [3], [4]

In order to obtain metal powder used in magneto-abrasive materials, a ball mill has been designed (figure 1). The equipment is designed and constructed to prepare metal waste (chips etc.), in order to re-use it for finishing magneto-abrasive operations or with other purposes.

The equipment is made of a metal case (7), in which there are steel balls (17). The equipment is driven by an engine (14), which transmits rotary motion to the mill case (7) with the aid of the belt pulley (11,15) through a drive belt (13).

Through mill rotating, the balls (17) keep the same direction as the rotating movement. This movement takes place as long as the tilt angle of the load, at a given moment, stays lower than the normal slope angle on which the rolling or falling of the grinding material take place. This way, through friction and collision, the fragmentation of the material subjected to grinding takes place.

Figure 1: Equipment for grinding metal waste (Ball mill); scheme of the ball mill: 1 – Mill bed, 2 – Frame, 3 - Bearing cover, 4 – Bearing, 5 - Bearing Support, 6-10 - Drive shafts, 7 – Mill case, 8 - Cover, 9 – Admission hopper, 11-15 – Belt pulley, 12 – Case, 13 -Drive Belt, 14 – Motor, 16 - Motor shaft, 17 – Balls

The following factors act on the intensity and mechanism of the fragmentation process (Co, '97)):

• the rotation speed of the mill;

• the ratio of the diameter (D) and the length (L) of the mill case (D/L);

• the weight and diameter of the grinding material;

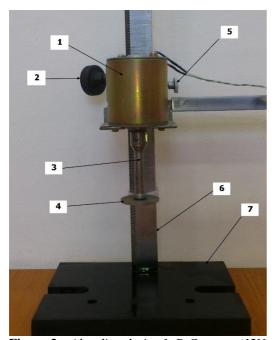
• the volume of material subjected to grinding;

• grinding time;

• the environment in which the grinding process takes place.

The metal waste (steel chips, iron cast) used to obtain metal powders, where taken from those resulted after cutting processes like turning, milling, drilling, grinding, broaching etc.), from various companies and from the cutting tools laboratory of the Faculty of Mechanical Engineering, Mechatronics and Management.

For a charging of m=0,750 kg of waste, 0,232 kg of metal powder was obtained in a period of time t=6 hours, using a number of 60 balls with a diameter of \emptyset 20 mm. The mill is powered with a direct current (D.C.) motor of 24 V and an amperage of 5A.


The powder obtained was subjected to a sieving procedure using an equipment with mechanical sieving through horizontal and vertical vibration type PSS, in a time period t=15 minutes. The electromagnetic sieving device for sieves with a diameter of 200 mm, (in accordance with EN 932-5), located in the Laboratory of materials technology, it is powered by electromagnetic pulse and, because of its vibrating actions (vertical, lateral and rotating), it offers a high precision of results.

After the sieving process, metal powders, with different sizes where obtained, these being used for magneto-abrasive finishing, in combination with abrasive powder.

2.2 Equipment for studying material abrasiveness [5], [6]

For the abrasive part of the magnetoabrasive materials used for superfinishing the metal parts, the use and re-use of abrasive material waste (granite, siliceous sand and electrocorundum) from different companies was chosen. Thus, granite waste were purchased from Suceava, Radauti and the siliceous sand was purchased from Dorohoi. The waste of abrasive disks (electrocorundum) was obtained from various commercial companies from Suceava area. The abrasive waste was separated from the iron filings (the grindings) with the help of magnets. In the same manner like metal powders, the electrocorundum was sieved using the equipment described above.

In order to study the abrasiveness of granite, siliceous sand and electrocorundum powder and the mixtures of these, a device has been designed as shown in figure 2.

Figure 3 – Abrading device 1. D.C. motor (12V, 1A); 2. Motor handle; 3. Threaded rod (M6); 4. Sample; 5. Locking screw; 6. Support column; 7. Base plate

It is formed by a DC motor of 12V (1), on which rod the sample is screwed (4). The motor can be repositioned on the rod (6) in order to set the container with the powder and for immersion the sample (4) in the abrasive powder.

The samples on which the experiments were carried out, have been made of steel (OLC 45), a bar with a diameter of 45 mm (Figure 3).

For creating the samples, a normal lathe SN 320, from the multidisciplinary laboratory of the Faculty of Mechanical engineering, Mechatronics and Management was used. The cutting parameters used were as following: speed n = 500 rpm, feed s = 0.18 mm/rev, cutting depth t = 3 mm. The number of

multypass is 7, the thread M6x1 was made on a lathe, using a die head.

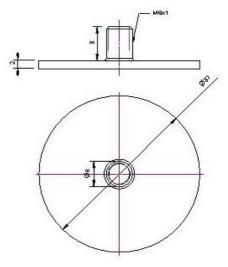


Figure 3: Sample's scheme

In order to study the roughness of the samples, two devices from the Faculty of Mechanical engineering, Mechatronics and Management were used: an optical scanning profilometer NANOFOCUS μ SCAN LASER PROFILOMETER (figure 4) and the Mahr Perthometer S2 type [9], [10], [11].

Figure 4–*a*) Nanofocus μScan Laser Profilometer; b) Mahr Perthometer S2 type

In order to determinate the speed of the ball mill and the abrading device, a SHIMPO DT-209X-S12 tachometer, located in Mechanical and Technologies Department from the "Stefan cel Mare" University of Suceava was used.

3. Characterizing the materials' abrasiveness. Gathering the results and obtaining the mathematical model [5], [8]

The research carried out and presented here mainly aim to determinate the extent of influence of each technological parameter on the level of final results characteristic (weight of material removed). Secondly, a determination of a mathematical correlation between the influences manifested by these parameters was aimed in such a way as to create a real possibility of control and rapid intervention in the process at the time when the one of parameters cannot be maintained at a preset value.

Taking into consideration that certain practical values (minimum value) of answers are followed, it is appropriate to establish interdependencies able to describe both the nature and the extent of the considered influences, therefore a mathematical model should be determined.

Hence the scientific literature consulted does not provide a proper mathematical solution, precise and operative in describing the interdependencies mentioned above, a mathematical model based on statistics was elaborated.

The mathematical models thus obtained will be subjected then to optimization.

In order to obtain the mathematical model a polynomial model with many variables was used:

- *independent variables*: speed (A), grain size (B), the exposure time (C);

- dependent variable: the quantity of removed material for each of the three materials (granite. siliceous sand and electrocorundum) and combinations between (granite them and siliceous sand. granite+electrocorundum, siliceous sand+ electrocorundum, granite + siliceous sand + electrocorundum).

In order to present in a simple manner the experiments conducted, coded variables will be used for the levels of independent variables (factors). Thus, the following notations are done:

-1 – the minimum level of a variable;

0 – the central level of a variable;

+1 – the maximum level of a variable.

The system's responses m_i (the weight of removed material) were also coded, using the following notations: $i = 1 \dots 63$, i being the number of experiment from the matrix of experiments.

Table 1 shows the codes for independent variables, as well as the correspondence between the real values and the coded ones taken into account for establishing the model.

To create the mathematical model, the program Design Expert was used.

Tabel 1: Symbolizing and correspondence betweencoded values and real values of independent variables

Variables	Symbols	The coded variables of real variables						
		-1	0	1				
Speed [rpm]	Α	700	850	1000				
Grain size [mm]	В	0.04	0.17	0.3				
Time [min]	С	30	60	90				

3.2. Characterizing the granite abrasiveness [6]

Statistical Summary found mathematical models to describe the dependent variables is presented in Table 2.

Dependent variable	Model	Standard deviation [σ]	Regression coefficient [R ²]	Adjusted regression coefficient [R ² adjusted]
m_1	2 nd order polynomial	0,0011050	0,9640	0,9573
m_2	2 nd order polynomial	0,0007566	0,9680	0,9598
<i>m</i> 3	2 nd order polynomial	0,0028440	0,9710	0,9605
m 4	2 nd order polynomial	0,0010190	0,9750	0,9585
<i>m</i> ₅	2 nd order polynomial	0,0018400	0,9710	0,9662
<i>m</i> ₆	2 nd order polynomial	0,0021300	0,9550	0,9522
m 7	2 nd order polynomial	0,0015490	0,9610	0,9515

 Table 2. Statistical summary of proposed mathematical models

For the mathematical model of the granite abrasiveness, the data were collected in accordance with Table 3,4,5,6,7,8 and 9.

	Granite											Siliceous sand									
Vo CRT.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]	No CRT.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]		No.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]	No.	Speed [rpm]	Grain size [mm]	Time[min]	Remov material	
	700	0,063	30	0.0015	32	850	71	60	0.0064		1	700	0.063	30	0.0009	32	850	0.1	60	0.004	
	700	0.05	30	0.0013	33	850	0.15	60	0.0091		2	700	0.05	30	0.0007	33	850	0.15	60	0.000	
	700	0.04	30	0.0008	34	850	0.2	60	0.0089		3	700	0.04	30	0.0005	34	850	0.2	60	0.00	
	700	71	30	0.0029	35	850	0.3	60	0.0131		4	700	0.1	30	0.0017	35	850	0.3	60	0.008	
	700	0.15	30	0.0034	36	1000	0,063	60	0.0037		5	700	0.15	30	0.0021	36	1000	0.063	60	0.002	
	700	0.2	30	0.0041	37	1000	0.05	60	0.0029		6	700	0.2	30	0.0025	37	1000	0.05	60	0.00	
	700	0.3	30	0.0046	38	1000	0.04	60	0.0021		7	700	0.3	30	0.0029	38	1000	0.04	60	0.00	
	850	0,063	30	0.0019	39	1000	71	60	0.0076		8	850	0.063	30	0.0011	39	1000	0.1	60	0.00	
	850	0.05	30	0.0014	40	1000	0.15	60	0.0095		9	850	0.05	30	0.0008	40	1000	0.15	60	0.00	
0	850	0.04	30	0,001	41	1000	0.2	60	0.01		10	850	0.04	30	0.0005	41	1000	0.2	60	0.00	
1	850	71	30	0.0034	42	1000	0.3	60	0.0145		11	850	0.1	30	0.0021	42	1000	0.3	60	0.01	
2	850	0.15	30	0.0047	43	700	0,063	90	0.0041		12	850	0.15	30	0.0030	43	700	0.063	90	0.003	
3	850	0.2	30	0.0052	44	700	0.05	90	0.0037		13	850	0.2	30	0.0033	44	700	0.05	90	0.00	
4	850 1000	0.3	30 30	0.0074	45	700 700	0.04	90 90	0.0025 0.0087		14	850	0.3	30	0.0049	45	700	0.04	90	0.00	
5		-1	30	0.0021	46 47			90			15	1000	0.063	30	0.0011	46	700	0.1	90	0.00	
р 7	1000	0.05	30	0.0015 0.0011	47	700	0.15	90	0.01 0.0119		16	1000	0.05	30	0.0008	47	700	0.15	90	0.00	
8	1000	71	30	0.0011	48 49	700	0.2	90	0.0119		17	1000	0.04	30	0.0004	48	700	0.2	90	0.00	
s 9	1000	0.15	30	0.0039	49 50	850	0.063	90	0.0059		18	1000	0.1	30	0.0024	49	700	0.3	90	0.00	
9	1000	0.15	30	0.0055	50	850	0,003	90	0.0039		19 20	1000	0.15	30 30	0.0033	50 51	850 850	0.063	90 90	0.003	
1	1000	0.2	30	0.0085	52	850	0.03	90	0.0033			1000	0.2		0.0037			0.05		0.003	
2	700	0.063	60	0.0035	52	850	71	90	0.0033		21	1000 700	0.3	30 60	0.0058	52 53	850 850	0.04	90 90	0.00	
3	700	0.05	60	0.0024	54	850	0.15	90	0.0121		22	700	0.063	60	0.0014	54	850	0.1	90	0.008	
4	700	0.04	60	0.0014	55	850	0.2	90	0.0155		23	700	0.03	60	0.0012	55	850	0.15	90	0.01	
5	700	71	60	0.005	56	850	0.3	90	0.0214		24	700	0.04	60	0.0007	56	850	0.2	90	0.01	
6	700	0.15	60	0.0059	57	1000	0.063	90	0.0068		25	700	0.15	60	0.0034	57	1000	0.063	90	0.01	
7	700	0.2	60	0.0069	58	1000	0.05	90	0.0051		20	700	0.15	60	0.0039	58	1000	0.005	90	0.00	
3	700	0.3	60	0.0084	59	1000	0.04	90	0.0038		28	700	0.2	60	0.0043	59	1000	0.05	90	0.001	
)	850	0,063	60	0.0033	60	1000	71	90	0.0137		28	850	0.063	60	0.0037	60	1000	0.04	90	0.002	
)	850	0.05	60	0.0025	61	1000	0.15	90	0.0164		30	850	0.05	60	0.0014	61	1000	0.15	90	0.001	
1	850	0.04	60	0.0018	62	1000	0.2	90	0.0177		31	850	0.04	60	0.0010	62	1000	0.15	90	0.011	
					63	1000	0.3	90	0.0244		51	850	0.04	00	0.0010	63	1000	0.2	90	0.	

										electrocorundum and siliceous sand										
				Electro	corundui	m				Mixture of siliceous sand and electrocorundum										
No.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]	No.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]		No.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]	No.	Speed [rpm]	Grain size [mm]	Time[min]	Remove material
1	700	0.063	30	0.0032	32	850	0.1	60	0.0157		1	700	0.063	30	0.0019	32	850	0.1	60	0.008
2	700	0.05	30	0.0029	33	850	0.15	60	0.0225		2	700	0.05	30	0.0016	33	850	0.15	60	0.001
3	700	0.04	30	0.0018	34	850	0.2	60	0.0199		3	700	0.04	30	0.0009	34	850	0.2	60	0.010
4	700	0.1	30	0.0068	35	850	0.3	60	0.0326		4	700	0.1	30	0.0030	35	850	0.3	60	0.013
5	700	0.15	30	0.0081	36	1000	0.063	60	0.0090		5	700	0.15	30	0.0050	36	1000	0.063	60	0.003
6	700	0.2	30	0.0098	37	1000	0.05	60	0.0068		6	700	0.2	30	0.0052	37	1000	0.05	60	0.004
7	700	0.3	30	0.0107	38	1000	0.04	60	0.0051		7	700	0.3	30	0.0061	38	1000	0.04	60	0.003
8	850	0.063	30	0.0039	39	1000	0.1	60	0.0187		8	850	0.063	30	0.0023	39	1000	0.1	60	0.008
9	850	0.05	30	0.0031	40	1000	0.15	60	0.0234		9	850	0.05	30	0.0018	40	1000	0.15	60	0.010
10	850	0.04	30	0.0022	41	1000	0.2	60	0.0247		10	850	0.04	30	0.0011	41	1000	0.2	60	0.010
11	850	0.1	30	0.0081	42	1000	0.3	60	0.0359		11	850	0.1	30	0.0041	42	1000	0.3	60	0.018
12	850	0.15	30	0.0114	43	700	0.063	90	0.0100		12	850	0.15	30	0.0063	43	700	0.063	90	0.004
13	850	0.2	30	0.0137	44	700	0.05	90	0.0089		13	850	0.2	30	0.0059	44	700	0.05	90	0.004
14	850	0.3	30	0.0182	45	700	0.04	90	0.0058		14	850	0.3	30	0.0081	45	700	0.04	90	0.002
15	1000	0.063	30	0.0049	46	700	0.1	90	0.0216		15	1000	0.063	30	0.0026	46	700	0.1	90	0.009
16	1000	0.05	30	0.0033	47	700	0.15	90	0.0248		16	1000	0.05	30	0.0018	47	700	0.15	90	0.011
17	1000	0.04	30	0.0025	48	700	0.2	90	0.0295		17	1000	0.04	30	0.0009	48	700	0.2	90	0.016
18 19	1000	0.1	30	0.0094	49 50	700	0.3	90 90	0.0357		18	1000	0.1	30	0.0048	49	700	0.3	90	0.017
20	1000	0.15	30	0.0121 0.0134	50	850	0.063	90	0.0144 0.0111		19	1000	0.15	30	0.0057	50	850	0.063	90	0.003
20 21	1000	0.2	30		52	850		90			20	1000	0.2	30	0.0064	51	850	0.05	90	0.005
21 22	700	0.3	30 60	0.0209	52	850	0.04	90	0.0079 0.0299		21	1000	0.3	30	0.0094	52	850	0.04	90	0.004
22	700	0.065	60	0.0057	54	850	0.1	90	0.0299		22	700	0.063	60	0.0033	53	850	0.1	90	0.013
23 24	700	0.03	60	0.0049	55	850	0.15	90	0.0425		23	700	0.05	60	0.0028	54	850	0.15	90	0.021
24 25	700	0.04	60	0.0031	56	850	0.2	90	0.0383		24	700	0.04	60	0.0016	55	850	0.2	90	0.018
26	700	0.15	60	0.0122	57	1000	0.063	90	0.0331		25	700	0.1	60	0.0054	56	850	0.3	90	0.025
20	700	0.15	60	0.0145	58	1000	0.003	90	0.0108		26	700	0.15	60	0.0096	57	1000	0.063	90	0.005
28	700	0.2	60	0.0103	59	1000	0.05	90	0.0092		27	700	0.2	60	0.0079	58	1000	0.05	90	0.003
29	850	0.063	60	0.0131	60	1000	0.04	90	0.0341		28	700	0.3	60	0.0100	59	1000	0.04	90	0.002
30	850	0.005	60	0.0078	61	1000	0.15	90	0.0341		29	850	0.063	60	0.0034	60	1000	0.1	90	0.009
31	850	0.03	60	0.0042	62	1000	0.15	90	0.0400		30	850	0.05	60	0.0034	61	1000	0.15	90	0.013
	1 050	0.04	~~	0.0042	63	1000	0.2	90	0.0607		31	850	0.04	60	0.0019	62	1000	0.2	90	0.014
				1		1000	0.5									63	1000	0.3	90	0.031

Table 7. Experimental data for mixture of granite and electrocorundum										Table 8. Experimental data for mixture of granite and siliceous sand									
			Mixt	ure of granite	and electi	rocorundu	m						Mix	cture of granite	and silic	eous sand	l		
No.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]	No.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]	No.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]	No.	Speed [rpm]	Grain size [mm]	Time[min]	Remo material
1	700	0.063	30	0.0020	32	850	0.1	60	0.0085	1	700	0.063	30	0.0012	32	850	0.1	60	0.00
2	700	0.05	30	0.0017	33	850	0.15	60	0.0113	2	700	0.05	30	0.0009	33	850	0.15	60	0.00
3	700	0.04	30	0.0010	34	850	0.2	60	0.0110	3	700	0.04	30	0.0006	34	850	0.2	60	0.00
4	700	0.1	30	0.0033	35	850	0.3	60	0.0153	4	700	0.1	30	0.0018	35	850	0.3	60	0.01
5	700	0.15	30	0.0053	36	1000	0.063	60	0.0042	5	700	0.15	30	0.0033	36	1000	0.063	60	0.00
6	700	0.2	30	0.0055	37	1000	0.05	60	0.0039	6	700	0.2	30	0.0033	37	1000	0.05	60	0.00
7	700	0.3	30	0.0062	38	1000	0.04	60	0.0032	7	700	0.3	30	0.0038	38	1000	0.04	60	0.0
8	850	0.063	30	0.0024	39	1000	0.1	60	0.0095	8	850	0.063	30	0.0013	39	1000	0.1	60	0.0
9	850	0.05	30	0.0016	40	1000	0.15	60	0.0123	9	850	0.05	30	0.0008	40	1000	0.15	60	0.0
10	850	0.04	30	0.0011	41	1000	0.2	60	0.0113	10	850	0.04	30	0.0005	41	1000	0.2	60	0.0
11	850	0.1	30	0.0046	42	1000	0.3	60	0.0192	11	850	0.1	30	0.0028	42	1000	0.3	60	0.0
12	850	0.15	30	0.0063	43	700	0.063	90	0.0051	12	850	0.15	30	0.0040	43	700	0.063	90	0.0
13	850	0.2	30	0.0065	44	700	0.05	90	0.0046	13	850	0.2	30	0.0040	44	700	0.05	90	0.0
14	850	0.3	30	0.0083	45	700	0.04	90	0.0029	14	850	0.3	30	0.0053	45	700	0.04	90	0.0
15	1000	0.063	30	0.0023	46	700	0.1	90	0.0100	15	1000	0.063	30	0.0011	46	700	0.1	90	0.0
16	1000	0.05	30	0.0018	47	700	0.15	90	0.0134	16	1000	0.05	30	0.0009	47	700	0.15	90	0.0
17	1000	0.04	30	0.0014	48	700	0.2	90	0.0183	17	1000	0.04	30	0.0005	48	700	0.2	90	0.0
18	1000	0.1	30	0.0049	49	700	0.3	90	0.0179	18	1000	0.1	30	0.0029	49	700	0.3	90	0.0
19	1000	0.15	30	0.0061	50	850	0.063	90	0.0076	19	1000	0.15	30	0.0039	50	850	0.063	90	0.0
20	1000	0.2	30	0.0073	51	850	0.05	90	0.0060	20	1000	0.2	30	0.0048	51	850	0.05	90	0.0
21	1000	0.3	30	0.0106	52	850	0.04	90	0.0041	21	1000	0.3	30	0.0071	52	850	0.04	90	0.0
22	700	0.063	60	0.0030	53	850	0.1	90	0.0148	22	700	0.063	60	0.0017	53	850	0.1	90	0.0
23	700	0.05	60	0.0025	54	850	0.15	90	0.0226	23	700	0.05	60	0.0013	54	850	0.15	90	0.0
24	700	0.04	60	0.0016	55	850	0.2	90	0.0193	24	700	0.04	60	0.0007	55	850	0.2	90	0.0
25	700	0.1	60	0.0067	56	850	0.3	90	0.0259	25	700	0.1	60	0.0045	56	850	0.3	90	0.0
26	700	0.15	60	0.0091	57	1000	0.063	90	0.0082	26	700	0.15	60	0.0060	57	1000	0.063	90	0.0
27	700	0.2	60	0.0086	58	1000	0.05	90	0.0066	27	700	0.2	60	0.0055	58	1000	0.05	90	0.0
28	700	0.3	60	0.0109	59	1000	0.04	90	0.0050	28	700	0.3	60	0.0073	59	1000	0.04	90	0.0
29	850	0.063	60	0.0037	60	1000	0.1	90	0.0166	20	850	0.063	60	0.0023	60	1000	0.1	90	0.0
30	850	0.05	60	0.0033	61	1000	0.15	90	0.0198	30	850	0.005	60	0.0018	61	1000	0.15	90	0.0
31	850	0.04	60	0.0020	62	1000	0.2	90	0.0228	31	850	0.03	60	0.0010	62	1000	0.15	90	0.0
				-	63	1000	0.3	90	0.0323	51	350	0.04	50	0.0010	63	1000	0.2	90	0.0

TEHNOMUS - New Technologies and Products in Machine Manufacturing Technologies

Table 9. Experimental data for mixture of granite, siliceous sand and electrocorundum

			Mixture of g	ranite, siliceou	is sand an	d electroc	orundum		
No.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]	No.	Speed [rpm]	Grain size [mm]	Time[min]	Removed material [g]
1	700	0.063	30	0.0018	32	850	0.1	60	0.0086
2	700	0.05	30	0.0016	33	850	0.15	60	0.0127
3	700	0.04	30	0.0010	34	850	0.2	60	0.0115
4	700	0.1	30	0.0037	35	850	0.3	60	0.0180
5	700	0.15	30	0.0043	36	1000	0.063	60	0.0050
6	700	0.2	30	0.0054	37	1000	0.05	60	0.0038
7	700	0.3	30	0.0061	38	1000	0.04	60	0.0028
8	850	0.063	30	0.0023	39	1000	0.1	60	0.0103
9	850	0.05	30	0.0017	40	1000	0.15	60	0.0129
10	850	0.04	30	0.0012	41	1000	0.2	60	0.0137
11	850	0.1	30	0.0045	42	1000	0.3	60	0.0200
12	850	0.15	30	0.0063	43	700	0.063	90	0.0055
13	850	0.2	30	0.0073	44	700	0.05	90	0.0049
14	850	0.3	30	0.0101	45	700	0.04	90	0.0032
15	1000	0.063	30	0.0027	46	700	0.1	90	0.0119
16	1000	0.05	30	0.0018	47	700	0.15	90	0.0137
17	1000	0.04	30	0.0013	48	700	0.2	90	0.0165
18	1000	0.1	30	0.0052	49	700	0.3	90	0.0198
19	1000	0.15	30	0.0067	50	850	0.063	90	0.0080
20	1000	0.2	30	0.0075	51	850	0.05	90	0.0062
21	1000	0.3	30	0.0116	52	850	0.04	90	0.0043
22	700	0.063	60	0.0031	53	850	0.1	90	0.0165
23	700	0.05	60	0.0027	54	850	0.15	90	0.0235
24	700	0.04	60	0.0017	55	850	0.2	90	0.0213
25	700	0.1	60	0.0068	56	850	0.3	90	0.0294
26	700	0.15	60	0.0080	57	1000	0.063	90	0.0093
27	700	0.2	60	0.0093	58	1000	0.05	90	0.0069
28	700	0.3	60	0.0106	59	1000	0.04	90	0.0051
29	850	0.063	60	0.0044	60	1000	0.1	90	0.0188
30	850	0.05	60	0.0033	61	1000	0.15	90	0.0225
31	850	0.04	60	0.0023	62	1000	0.2	90	0.0244
					63	1000	0.3	90	0.0331

4. Conclusions

Following the analysis of the experimental data, it appears that the best material removal

was done when using powders of abrasive waste (electrocorundum) a maximum quantity of material removed m = 0,0607 grams was

registered , followed, in order, by a powder mixture of granite and electrocorundum (m = 0.03312 g), a mixture of granite, siliceous sand and electrocorundum (m = 0.0323 g), a mixture of siliceous sand and electrocorundum (m = 0, 0312 grams), granite powder (m = 0.0244g), granite and siliceous sand mixture (m = 0.022005 g) and siliceous sand (m = 0.0168 g). These values were obtained at maximum speed and grain size respectively at 1,000 rpm and a grain size of 0.4mm. In other words, the impact of speed is negligible for small grains.

References

[1] [Am,'97] Amza, G., *"Tehnologia"* materialelor". Editura Tehnică, 346 pp., București, 1997 [2] [Ci,'08] Ciocan, A., "Valorificarea deșeurilor metalice Procese si tehnologii", University Press, Galați, 2008 [3] [Co,'97] Cojocaru, M., "Producerea si procesarea pulberilor *metalice"*, Editura Matrix, Bucuresti, 1997

[4] [En, '08] Ene, G., Prodea, I.-M., "*Calculul puterii necesare acționării morilor tubulare cu bile*", Revista de Chimie, nr. 59, pp. 106-112, București, 2008

[5] [Gu,'00] Gutt, G., "Analiza instrumentală: spectroscopie", Editura Universității Suceava, Suceava, 2005

[6] [Ke, '01] Kelly, D.A., Hutchings, I.M., "A *new method for measurement of particle abrasivity*", 13th International Conference on Wear of Materials, Volume 250, Issues 1–12, Pages 76–80, October, 2001

[7] [Ko,'13] Korka, Z.-I.,*Bazele aşschierii şi* generării suprafețelor "Editura Eftimie Murgu, Reșița, 2013

[8] [Ta, '87] Taloi, D., "*Optimizarea proceselor tehnologice*", Editura Academiei RSR, București, 1987

[9] <u>http://www.nanofocus.com/products/uscan/us</u> <u>can-custom/</u>

[10] http://surfacefinishequipment.com/mahr%20S 2.htm

[11] http://www.mahr.com/index.php