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CALCULATION OF THE PRESSURE OF THE LUBRIFICATION FILM
IN THE VARIABLE STRESSED SURFACE

Valeriu Certan

Technical University of Moldova

Abstract: This paper presents a simpler form of deriving the pressures’ equation taking as
starting point the Reynolds equation for hydrodynamic bearing and the general movement
solution for thick-walled cylinder loaded with proportional pressure sinq.
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1. Introduction

With the appearance of new materials that
have satisfactory resistance the use of sliding
bearings in various branches of engineering
broadens. Short bearings which length is part
of the diameter have a widespread use. The
use of short bearings has as aim the reduction
of overall weight and size dimensions.

For various reasons the functioning of short
bearings was less researched. One of the most
known papers is Riebe A., Falţ E., Frene J.,
Nicolas D., Degueurce B [9,3], etc.

Despite  the  widespread  use  of  short
bearings, their calculation is not yet
satisfactory.

It is known that the main factor which
determines the bearing capacity and reliability
of the surface is the layer of lubricant which
separates the sliding surfaces. However, of
further importance remains the issue about the
influence of the length of the bearing on  the
thickness of the lubricant layer, variable cyclic
load etc.

The theory of lubrication for long bearings
gives satisfactory results for the calculation of
long bearing because the length is an auxiliary
factor which can be approximated with a
parabolic or another correction coefficient.
However, when the length of the bearing

becomes small measure, the theory of long
bearings is less used. It may be used only for
qualitative analysis.

Currently the research in this area is
focused on the theory of finite length bearing
lubrication.

In this area it is worth mentioning the
following papers Hans Reissner [8], Muskat
and Morgan [4, 2, 5].

H.  Reissner  has  analysed  the  issue  of
constant load bearing for the condition of
existence of a continuous lubrication layer in
empty  space.  However  this  condition  is
fulfilled  only  for  eccentricity  less  than  0.5  as
recommended by Zommerfelid [6]. The results
of H. Reissner are far from a final solution yet.

This paper attempts to apply the schematic
flow model to determine the pressure in the
continuous lubricant layer in empty space for
the finite length bearing under the action of
variable in size load without taking into
account the influence of the rotational
movement of the slide.

2. Basic equation and the boundary
conditions of the problem

The equation for the distribution of pressure
in the lubricant layer has been derived by
Reyolds, [1].
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For the general case this equation has
the following form
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where
x – is the coordinate on the sliding

surface in the direction of the relative velocity;
z – is the coordinate on the sliding

surface in the direction perpendicular to the
direction of the relative movement;

y  – is the coordinate perpendicular to
the sliding surface;

0U  – is the velocity for 0=y ;

1U – is the velocity for hy = ,

dt
dhV = .

For the case under consideration which
assumes that the slide is not rotating

00 =U
and

01 =U .
Consequently the O. Reinolds’ equation

takes the following form
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The thickness of the lubricant film has the

following form
jd coseh -=  ,

where  - rR-=d ; e  - is the distance
between centres (fig.1)

1OOe = .
In this case

dt
de

dt
dh jcos-= .

By replacing x with the product of radius
r  and angle j , we obtain
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0=y
The origin of the coordinate system is

taken at the surface of the front of the slide.

The slide length is denoted by l .  The  surface
boundary conditions for the case under
consideration are: 0=p  for 0=z , lz = and

.
2
pj ±=

a

b

Figure 1

Basic deduction of O. Reinolds’ equation

Let’s assume that a liquid continuous
medium of arbitrary viscosity is moving
between two parallel plates A and B, which
may  become  close  to  each  other,  remaining
parallel. The liquid particles are moving under
the action of difference in pressure and friction
forces. The thickness of the liquid layer h will
be considered as small measure compared to
other dimensions. When considering the liquid
film thickness as small measure, it can be
considered that the pressure in the liquid layer
is changing only along the plates, or in other
words, in the direction of the x and z axes.
With varying the pressure in the direction of
thickness of layer the pressure will be
neglected,

0=
¶
¶
y
p

.
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Similarly (due to the thickness of the liquid
layer as small measure and the parallelism of
the plates) the change of the speed of the
particles in the direction along the axis x  and
z can be neglected as small measures in
comparison  with  the  movement  in  the
direction of the y axis.

a

b

Figure 2

Next we will consider the forces which
stress the elementary (small) volume of a
parallelepiped shape (fig. 2, a). On the sides
perpendicular to the y axis, in the direction of
the x axis the following friction forces work
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The friction forces on other facets can
be neglected because the change of the speed
on these facets is low.

The pressure forces act on the facets,
perpendicular to x axis
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Figure 2, a presents  the  forces  related  to
axes x and z . The low-order neglected forces
in fig. 2, a are not presented.

Neglecting the inertial force of the
particle, the equilibrium condition of forces
leads to the following:
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After applying the double integration we
obtain:
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The considered plates can only become
closer to each other while remaining parallel to
each  other.  Assuming that  the  hypothesis  that
the fluid sticks perfectly to the plate is true,
we get that for boundary conditions hy =   and

0=y
0=v .

Finally
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The highest speed is obtained for

2
hy =

.
In such case
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The average speed in a section of height h ,

and width dz  forms
3
2  of the maximum value
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Let’s assume that the top plate is moving
downward  so  that  it  remains  parallel  to  itself.
At this moment in the considered layer
variable pressures will appear. Consequently
relationships will be established between the

speed of the plate movement,
t
h
¶
¶ , the

thickness of the liquid layer h  and its internal
pressure p . For this purpose the hypothesis of
continuous medium will be applied. The
amount of lubricant which flows from the
elementary volume in the form of
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parallelepiped with the dimensions xD , zD ,
hD , at the movement of the top plate

downward at distance hD  will  be  equal  to
hzx D´D´D (fig. 3).

Figure 3

Let’s calculate the amount of fluid that
will drain through the side walls of the
elementary parallelepiped.

The amount of fluid that will drain
through the wall c which  is  also  called  the
leakage will be:
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The amount of fluid that will drain through
the  side  wall d of the elementary
parallelepiped will be:
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   The difference between dQ  and cQ  will
be:
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Similarly the quantity of liquid that will
drain through the side walls of the elementary
parallelepiped perpendicular to the axe z  can
be calculated:
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Summing up the drained quantities, the
consumption, when equalling to the volume

tzx D´D´D  and applying the limit leads to:
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This represents the equation for the
distribution of pressure in lubricant layer
obtained by Reinolds.
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