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Abstract: This paper presents the deduction of the equation for radial motion of points on 
the contact area based on Reynolds equation for short hydrodynamic bearing and the general 

motion solution for thick-walled cylinder with proportional load sin .  

The obtained result appreciates the tensions and deformations that allow an optimal solution 

for the design of the bearing. 
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1.  Introduction 

 

Slider bearings come in structures of 

mechanical systems as technical applications 

of basic cases to support shafts and axles that 

rotate in space on a fluid lubricant film, 

considering it is incompressible and has 

constant viscosity. 

The use of these mechanical sub-assemblies 

for fixing shafts is widely used in turbine 

driven devices, submersible and sealed pumps 

which use as lubricant the low viscosity 

medium for lubrication and cooling: fuel, heat 

carriers, hydrocarbon condensate etc. 

This poses special requirements when 

choosing the type of the bearing as well as the 

methods for the calculation and design. 

One of the areas of interest at the moment 

is the theoretical and experimental deepening 

of the mechanics of contact in order to assess 

more accurately the bearing capacity and the 

sustainability of the elements which operate 

with sliding contact. 

Most contacts encountered in technics work 

not only with normal load, but are also subject 

to tangential forces distributed on the contact 

area in the form of tangential tensions. The 

resultant of these tensions can be either a force 

inclined to the axis or directed by one of the 

axes, or a spin moment. 

While tangential tensions induced by the 

load on the contact area are smaller in 

comparison with the normal pressure, they 

have a significant effect on the state of tension. 

Experimental tests have shown that durability 

of the contact is reduced considerably in the 

presence of tangential tensions. It is therefore 

necessary to study the state of tension 

produced in some of the bodies in contact by 

the mentioned distributions of tensions on the 

contact area such as normal and tangential. 

The impossibility to solve analytically the 

integral of the pressures in the film spin, 

tensions and movements, is one of the reasons 

why so far no general solution has been found 

for the case when the pressure in the lubricant 

spin is considered as pressure. Therefore, 

solutions have been considered for specific 

cases.  

For the linear contact, a primary solution is 

provided by E. M'Ewen [1], by using complex 

functions. Similar solutions were obtained by 
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H. Poritsky [2] by using Airy functions and by 

J. O. Smith and S. K. Liu [3] by using the real 

variables method.  

The theoretical results were confirmed by 

experimental studies on the linear contact 

made by V.S. Covalschi and M. M. Saverin 

[4].   

An analytical approach for the circular 

contact [5] proves, using the symmetrical 

properties of the integrals, that in the central 

plan xOy which is parallel with the direction of 

action of tangential forces, there exist a 

tangential tension yx  which reaches its 

extreme on the central axis Ox and is negative. 

The tensions xz  and yz  are cancelled. The 

normal tensions xx , yy  and 
zz  are considered 

in a global context through hydrostatic pressure. 

This paper addresses the state of tension 

produced in plans xOz and yOz by the 

tangential and radial forces applied to the 

contact with a specific direction on the circular 

contact area, and intents to specify the 

geometrical form of the  gap and of the spin 

which influences the minimum thickness of 

the lubricant film. To keep things simple, the 

paper considers the operation of hydrodynamic 

bearings which is based on the principle of 

obtaining carrying capacity at the flow of 

lubricant through the two non-parallel 

surfaces, when the pressure in the film, which 

equilibrates the applied load, is created 

naturally by relative movement of surfaces. 

 

2.  Theoretical principles 

 

To solve the problem, the Reynolds 

equation for short hydrodynamic bearing takes 

the following form: 
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After applying the integral for  an arbitrary 

angle of position   we get the following 

expression: 
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In this case 12 RRJ   - represents the 

radial gap in the bearing (fig. 2), and the film 

thickness has the following form: 

  cos1 Jh                      (3) 

 

 
 

Figure 1 

 

 

 
 
Figure 2 

 

In order to establish and maintain an 

operating mode with liquid friction sliding, the 

size of the bearing and spindle need to be set 

considering the rigidity conditions that will 

exclude the mutual "hooking" of roughness of 

the spindle and bearing. This will ensure that 

the thickness of the lubricant film in the 

narrowest place (fig. 1), is bigger than the sum 

of the heights of the roughness of surfaces of 

the spindle - H1 and bearing - H2. Therefore, 

when calculating the relative gap in the case of 

radiated sliding bearings, the deformations of 

coupling elements [5] should be taken into 

account. 

Since the level reached by the state of 

tension in a point of an elastic body stressed 

by a distributed load  ,zp  according to (2) 
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can be estimated through tensions, 

deformations or potential energy of 

deformation, we will next establish the 

relationships which will allow presenting the 

diagrams of the main tensions and 

displacements. 

The normal tensions along the radial 

and circumferential direction in polar 

coordinates according to [7, 8] is written as  
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for which  ,   and f  - represent the tension 

functions. 

To solve this problem, when the bearing is 

stressed on lateral surfaces with proportional 

loads cos  and sin , the tensions’ function is 

chosen of the following form: 
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  4226 rrzB               (11) 

  2226 rrzCf                         (12) 

The tensions’ function in polynomial form 

(2) satisfies the bi-harmonic condition. 

Therefore, for solving the flat problem of 

tensions in bottomless thick-walled cylinder 

stressed only by non-symmetric internal 

pressures, the normal radial, circumferential 

as well as tangential tensions are written as: 
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Relationships (13 - 15) represent the flat 

state of tensions and allow to estimate the 

deformations of the bottomless thick-walled 

tube, that is, of the movement of points on the 

internal cylindrical surface which is stress non-

symmetrically by internal pressures. 

In order to calculate the movements of a 

specific point in the radial direction, the 

general solution for movements for a thick-

walled cylinder when the load applied on the 

internal surface is proportional to  sin  and 

cos  is taken as basis and takes the following 

form: 
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In the case of the non-stressed along the 

axial direction tube, for determining the 

movement of a point in the radial direction 

induced by the stress applied on the internal 

surface  ,zp , the equation (16), when  the 

mass forces are zero, is complemented with 

the following equations:   
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For the boundary conditions 
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the constants A, B, and C are 

calculated. 
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When substituting the values of constants 

obtained in (16) we get the relationship based 

on which we can calculate radial 

displacements for any point with the radius 

r in the bottomless thick-walled cylinder 

stressed on the internal surface with the load 

 ,zp  of the form: 
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When the designer chooses to employ an 

optimisation study with multiple parameters, 

the obtained relationship can be used for the 

design of a sliding bearing when determining 

the main optimal requirements for a highly 

efficient and reliable functioning. 
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