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Abstract: Mechanical contacts found in practice occur over finite areas, often bound by 

closed conical curves.  In such situations it is useful to evaluate the effects of some particular 

load distributions. Mechanical contacts found in practice occur over finite areas, often bound 

by closed conical curves.  In such situations it is useful to evaluate the effects of some particular 

loads. The present study considered the particular case where the closed conical curve is 

represented by an ellipse. In this situation, three particular cases were analyzed and the normal 

displacement was modeled mathematically.  
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1.  Introduction  

Because the dimensions of the contact area 

are small compared to the curvature radii of 

the two adjacent surfaces, evaluated in the area 

of initial contact, it is often considered that 

these radii are infinite. In this case, the bodies 

in contact can be assimilated by elastic half-

spaces. In this context, the elastic half-space 

represents that part of space bound by a plane, 

which is filled with an elastic material of 

known parameters , E and G. 

The elastic half-space can be stressed by 

loads applied on its boundary plane. In the 

simplest situations, these loads can be 

concentrated or evenly distributed along a 

straight line. The problems of determining the 

displacements and stresses produced in the 

half-space by these simple loads are called 

fundamental problems of the elastic half-

space, [Glovnea,1999]. The case of a half-

space loaded by a concentrated force 

perpendicular to the boundary plane is called 

“the Boussinesq problem”. If the concentrated 

force is contained within the boundary plane, 

the loading case is called “the Cerruti 

problem”. The “combined Boussinesq-Cerruti 

problem”, appears when the half space is 

loaded by a randomly oriented concentrated 

force applied in a point from the half-space 

boundary plane. In the situation where the 

elastic half-space is stressed by a force 

uniformly distributed along a line contained 

within the boundary plane, the resulting case is 

called “the Flamant problem”. In the same 

category, of fundamental problems of the 

elastic half-space, falls the principle of 

overlapping effects, which allows the 

generalization of abovementioned problems in 

the case of continuously distributed loads over 

a certain region of the half-space bordering 

plane.  

Mechanical contacts found in practice occur 

over finite areas, often bound by closed 

conical curves.  In such situations it is useful 

to evaluate the effects of some particular loads.  

The present study considered the particular 

case where the closed conical curve is 
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represented by an ellipse. In this situation, 

three particular cases were analyzed and the 

normal displacement was modeled 

mathematically. 

2.  Load distribution over an elliptical 

area 

In the case of loading areas bound by an 

ellipse having a and b as half-axes, the 

coordinate system origin is chosen in the 

ellipse center. According to the method 

developed by Johnson, [Johnson,1985], the 

load distribution is assumed to be described by 

Eq. (1): 
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where p0 represents the central pressure and n 

is an exponent that can take various values. 

In order to estimate the effects of the 

considered pressure distribution, the principle 

of overlapping effects is applied to 

Boussinesq’s problem for the elastic half-

space. 

The displacement along the z axis of an 

arbitrary point of the boundary plane (initially 

at z=0) can be expressed by: 
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Eq. (2) is typical for a single layer potential, 

having as source density the pressure 

distribution. The integral over the elliptic area, 

A, can be customized from the general 

expression of the ellipsoid’s potential in 

ellipsoidal coordinates, [Johnson,1985], as: 
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where s represents the maximum root of Eq. 

(4).  
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In the case of a flattened ellipsoid in the z 

plane (z=0), case in which c→ 0, the double 

integral over the contour A, Eq. (3) can be 

written as: 
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3. Modeling of particular cases of 

pressure distributions  

For the present study, three particular 

situations of the n exponent from Eq. (1) were 

modeled: 
1

2
n = −  , 0n =  and 

1

2
n = . 

3.1 Pressure distribution case I 

In the first considered case, for 
1

2
n = − , the 

pressure distribution, given by Eq.(1), 

becomes: 
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This corresponds to a pressure tending to 

infinity over the elliptic contour, and to a 

minimum equal to 0p , in the ellipse center.  

Inside the area delimited by the ellipse, the 

displacement w will become: 
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The relation for displacement given by Eq. 

(7), clearly illustrated that the displacement is 

constant and the surface deformed profile 

remains flat.  

The complete elliptic integral, usually 

denoted by K(e), which intervenes in Eq. (7), 

leads to the following expression of the 

displacement w over the loaded area, 

[Johnson,1985]: 
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−2 1 2

0


  , (8) 

where e represents the eccentricity of the 

ellipse, e = −1 2 , and  = b a/  is the ellipse 

aspect ratio. 

3.2 Pressure distribution case II 

In the case of an uniformly distributed 

pressure over the ellipse, p p= 0 , it results that 

n = 0. This leads to a normal displacement of 

the elastic half-space boundary plane points 

given by: 
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The double integral form Eq. (9) can be 

transformed into a simple integral if an 

arbitrary string is traced through the M x y( , )  

point from the elliptic surface, inclined with an 

angle  by report to the abscissa.  By 

transformation into polar coordinates, with the 

radius measured along the string length ( )  

and considering the polar angle  , the 

following integral expression of the 

displacement w x y( , )  can be obtained: 
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(10) 

The integral with regards to  from Eq. (10) 

can’t be expressed by combinations of 

elementary functions, so it is necessary to 

express it numerically. Solutions for 

determining the w displacement in this case, 

obtained via numerical integration by aid of 

MathCad, were presented by Diaconescu and 

Glovnea, [Diaconescu,1994], [Glovnea,1999]. 

3.3 Pressure distribution case III 

In the third considered case, for 
1

2
n = , the 

pressure distribution, given by Eq.(1), takes 

the shape of demi-ellipsoid being null along 

the elliptic contour and reaching maximum 

value p0 over the ellipse center, as yielded by 

Eq. (11): 
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The pressure distribution given in Eq.(11) is 

known in literature as Hertz pressure 

distribution. 

The displacement w inside the elliptic area 

is in this case given by: 
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The expression given by Eq. (12) can be 

rewritten as a second degree polynomial, as 

showed by Johnson, in [Johnson,1985]: 
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which denotes that the deformed surface 

from the interior of the elliptical contour is 

shaped as an elliptic paraboloid. 

In Eq. (13), the L, M and N coefficients 

have the following expressions: 
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where E(e) represents the second complete 

elliptical integral. 

The maximum displacement occurs in the 

ellipse center and its value w0  is given by: 
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4.  Conclusions 

Mechanical contacts found in practice occur 

over finite areas, often bound by closed 

conical curves.  In such situations it is useful 

to evaluate the effects of some particular load 

distributions.  

Mechanical contacts found in practice occur 

over finite areas, often bound by closed 

conical curves.  In such situations it is useful 

to evaluate the effects of some particular loads.  

The present study considered the particular 

case where the closed conical curve is 

represented by an ellipse. In this situation, 

three particular cases were analyzed and the 

normal displacement was modeled 

mathematically.  

The relations obtained in the present paper 

can easily be used for the particular case where 

the closed conical curve is represented by a 

circle.  
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